Feeds:
Posts
Comments

Posts Tagged ‘endometriosis’

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

 

With the progress in IVF, the contribution of the Fallopian tube towards successful reproduction has been comparatively overlooked. It is clear from the success of IVF, which of course bypasses tubal transport that exposure to the tubal milieu is not an absolute requisite for fertilization or implantation to occur. Thus, the Fallopian tube is often now thought of as little more than a mere conduit. However, in fertilization in vivo, the Fallopian tube plays an essential role in gamete transport, fertilization and the early development of the embryo. It is becoming increasingly evident that the mechanism of tubal transport is much more complex than first thought and can be affected by a wide range of factors and conditions that may impair fertility. The Fallopian tube plays an essential role in tubal transport of both gametes and embryos and in early embryogenesis. The tube undergoes cyclical changes in morphology and ciliary activity in response to ovarian hormones. Whilst the varying contributions to tubal transport of ciliary activity, muscle contractions and secretory activity remain undetermined, there is emerging evidence that muscle contractions may play a role in mixing of secretions rather than in propulsion of gametes and embryos. Ciliary activity is more vigorous in the secretory phase of the menstrual cycle. Many pathological conditions associated with infertility and ectopic pregnancy have been shown either to destroy cilia or to reduce ciliary motion or both. Gonococcal infection produces both destruction of the ciliated cells and reduced ciliary activity, whereas chlamydia also destroys the tubal mucosa. Although the micro-organism itself does not appear to alter ciliary beat, the inflammation and oedema associated with chlamydial salpingitis has been shown to reduce CBF (ciliary beat frequency). Peritoneal fluid from women with mild-and-moderate endometriosis reduces CBF significantly in vitro. An ‘ovum capture inhibitor’ has been described in the peritoneal fluid of women with endometriosis, which covers the fimbrial cilia resulting in a complete but reversible loss of ovum capture ability. The ‘immotile cilia syndrome’ is known to be associated with subfertility. Deciliation is found in Fallopian tubes of women with a past history of ectopic gestation. These women are at increased risk of future tubal pregnancies. This evidence suggests an important role for the tubal cilia in the mechanism of gamete and embryo transport. Further research needs to be undertaken to investigate the functioning of the cilia in vivo. Only one study has measured physiological CBF in vivo, and this needs to be extended to the effect of pathological states on CBF. Direct examination of the effect of conditions such as endometriosis or pelvic inflammatory disease on ovum transport may be possible in animal models using laparoscopy to investigate ovum pick-up and falloposcopy to study ovum transit along the tube. It is only as we begin to understand more about the complex interactions of the effectors of tubal transport that we approach the possibility of being able to improve tubal transport in women afflicted with tubal infertility.

 

Source References:

 

http://humupd.oxfordjournals.org/content/12/4/363.long

 

Read Full Post »