Brain, learning and memory
Larry H. Bernstein, MD, FCAP, Curator
LPBI
March 23, 2016 Exploring long-range communications in the brain
http://www.kurzweilai.net/exploring-long-range-communications-in-the-brain
Red and green dots reveal a region in the brain that that is very dense with synapses. A optically activated fluorescent protein allows Ofer Yizhar, PhD, and his group to record the activity of the synapses. (credit: Weizmann Institute of Science)
Weizmann Institute of Science researchers have devised a new way to track long-distance communications between nerve cells in different areas of the brain. They used optogenetic techniques (using genetic engineering of neurons and laser light in thin optical fibers to temporarily silence long-range axons, effectively leading to a sustained “disconnect” between two distant brain nodes.
By observing what happens when crucial connections are disabled, the researchers could begin to determine the axons’ role in the brain. Mental and neurological diseases are often thought to result from changes in long-range brain connectivity, so these studies could contribute to a better understanding of the mechanisms behind health and disease in the brain.
The study, published in Nature Neuroscience, “led us to a deeper understanding of the unique properties of the axons and synapses that form the connections between neurons,” said Ofer Yizhar, PhD, in the Weizmann Institute of Science’s Neurobiology Department. “We were able to uncover the responses of axons to various optogenetic manipulations. Understanding these differences will be crucial to unraveling the mechanisms for long-distance communication in the brain.”
Abstract of Biophysical constraints of optogenetic inhibition at presynaptic terminals
We investigated the efficacy of optogenetic inhibition at presynaptic terminals using halorhodopsin, archaerhodopsin and chloride-conducting channelrhodopsins. Precisely timed activation of both archaerhodopsin and halorhodpsin at presynaptic terminals attenuated evoked release. However, sustained archaerhodopsin activation was paradoxically associated with increased spontaneous release. Activation of chloride-conducting channelrhodopsins triggered neurotransmitter release upon light onset. Thus, the biophysical properties of presynaptic terminals dictate unique boundary conditions for optogenetic manipulation.
references:
- Mathias Mahn, Matthias Prigge, Shiri Ron, Rivka Levy & Ofer Yizhar. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nature Neuroscience (2016) doi:10.1038/nn.4266
- Supplementary Information
DARPA’s ‘Targeted Neuroplasticity Training’ program aims to accelerate learning ‘beyond normal levels’

DARPA has announced a new program called Targeted Neuroplasticity Training (TNT) aimed at exploring how to use peripheral nerve stimulation and other methods to enhance learning.
DARPA already has research programs underway to use targeted stimulation of the peripheral nervous system as a substitute for drugs to treat diseases and accelerate healing*, to control advanced prosthetic limbs**, and to restore tactile sensation.
But now DARPA plans to to take an even more ambitious step: It aims to enlist the body’s peripheral nerves to achieve something that has long been considered the brain’s domain alone: facilitating learning — specifically, training in a wide range of cognitive skills.
The goal is to reduce the cost and duration of the Defense Department’s extensive training regimen, while improving outcomes. If successful, TNT could accelerate learning and reduce the time needed to train foreign language specialists, intelligence analysts, cryptographers, and others.
“Many of these skills, such as understanding and speaking a new foreign language, can be challenging to learn,” says the DARPA statement. “Current training programs are time consuming, require intensive study, and usually require evidence of a more-than-minimal aptitude for eligibility. Thus, improving cognitive skill learning in healthy adults is of great interest to our national security.”
Going beyond normal levels of learning
The program is also notable because it will not just train; it will advance capabilities beyond normal levels — a transhumanist approach.
“Recent research has shown that stimulation of certain peripheral nerves, easily and painlessly achieved through the skin, can activate regions of the brain involved with learning,” by releasing neurochemicals in the brain that reorganize neural connections in response to specific experiences, explained TNT Program Manager Doug Weber,
“This natural process of synaptic plasticity is pivotal for learning, but much is unknown about the physiological mechanisms that link peripheral nerve stimulation to improved plasticity and learning,” Weber said. “You can think of peripheral nerve stimulation as a way to reopen the so-called ‘Critical Period’ when the brain is more facile and adaptive. TNT technology will be designed to safely and precisely modulate peripheral nerves to control plasticity at optimal points in the learning process.”
The goal is to optimize training protocols that expedite the pace of learning and maximize long-term retention of even the most complicated cognitive skills. DARPA intends to take a layered approach to exploring this new terrain:
- Fundamental research will focus on gaining a clearer and more complete understanding of how nerve stimulation influences synaptic plasticity, how cognitive skill learning processes are regulated in the brain, and how to boost these processes to safely accelerate skill acquisition while avoiding potential side effects.
- The engineering side of the program will target development of a non-invasive device that delivers peripheral nerve stimulation to enhance plasticity in brain regions responsible for cognitive functions.
Proposers Day
TNT expects to attract multidisciplinary teams spanning backgrounds such as cognitive neuroscience, neural plasticity, electrophysiology, systems neurophysiology, biomedical engineering, human performance, and computational modeling.
To familiarize potential participants with the technical objectives of TNT, DARPA will host a Proposers Day on Friday, April 8, 2016, at the Westin Arlington Gateway in Arlington, Va. (registration closes on Thursday, March 31, 2016). ADARPA Special Notice announces the Proposers Day and describes the specific capabilities sought. A Broad Agency Announcement with full technical details on TNT will be forthcoming. For more information, please email DARPA-SN-16-20@darpa.mil.
* DARPA’s ElectRx program is looking for “demonstrations of feedback-controlled neuromodulation strategies to establish healthy physiological states,” along with “disruptive biological-interface technologies required to monitor biomarkers and peripheral nerve activity … [and] deliver therapeutic signals to peripheral nerve targets, using in vivo, real-time biosensors and novel neural interfaces using optical, acoustic, electromagnetic, or engineered biology strategies to achieve precise targeting with potentially single-axon resolution.”
** DARPA’s HAPTIX (Hand Proprioception and Touch Interfaces) program “seeks to create a prosthetic hand system that moves and provides sensation like a natural hand. … HAPTIX technologies aim to tap in to the motor and sensory signals of the arm, allowing users to control and sense the prosthesis via the same neural signaling pathways used for intact hands and arms. … The system will include electrodes for measuring prosthesis control signals from muscles and motor nerves, and sensory feedback will be delivered through electrodes placed in sensory nerves.”
Fading of Epigenetic Memories across Generations Is Regulated
Neurons involved in working memory fire in bursts, not continuously
http://www.genengnews.com/gen-news-highlights/fading-of-epigenetic-memories-across-generations-is-regulated/81252537
-
Epigenetic “remembering” is better understood than epigenetic “forgetting,” and so it is an open question whether epigenetic forgetting is, like epigenetic remembering, active—a distinct biomolecular process—or passive—a matter of dilution or decay. New research, however, suggests that epigenetic forgetting is an active process, one in which a feedback mechanism determines the duration of transgenerational epigenetic memories.
The new research comes out of Tel Aviv University, where researchers have been working with the nematode worm Caenorhabditis elegans to elucidate epigenetic mechanisms. In particular, the researchers, led by Oded Rechavi, Ph.D., have been preoccupied with how the effects of stress, trauma, and other environmental exposures are passed from one generation to the next.
In previous work, Dr. Rechavi’s team enhanced the state of knowledge of small RNA molecules, short sequences of RNA that regulate the expression of genes. The team identified a “small RNA inheritance” mechanism through which RNA molecules produced a response to the needs of specific cells and how they were regulated between generations.
“We previously showed that worms inherited small RNAs following the starvation and viral infections of their parents. These small RNAs helped prepare their offspring for similar hardships,” Dr. Rechavi explained. “We also identified a mechanism that amplified heritable small RNAs across generations, so the response was not diluted. We found that enzymes called RdRPs [RNA-dependent RNA polymerases] are required for re-creating new small RNAs to keep the response going in subsequent generations.”
Most inheritable epigenetic responses in C. elegans were found to persist for only a few generations. This created the assumption that epigenetic effects simply “petered out” over time, through a process of dilution or decay. “But this assumption,” said Dr. Rechavi, “ignored the possibility that this process doesn’t simply die out but is regulated instead.”
This possibility was explored in the current study, in which C. elegans were treated with small RNAs that target the GFP (green fluorescent protein) gene, a reporter gene commonly used in experiments. “By following heritable small RNAs that regulated GFP—that ‘silenced’ its expression—we revealed an active, tunable inheritance mechanism that can be turned ‘on’ or ‘off,'” declared Dr. Rechavi.
Details of the work appeared March 24 in the journal Cell, in an article entitled, “A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans.” The article shows that exposure to double-stranded RNA (dsRNA) activates a feedback loop whereby gene-specific RNA interference (RNAi) responses “dictate the transgenerational duration of RNAi responses mounted against unrelated genes, elicited separately in previous generations.”
Essentially, amplification of heritable exo-siRNAs occurs at the expense of endo-siRNAs. Also, a feedback between siRNAs and RNAi genes determines heritable silencing duration.
“RNA-sequencing analysis reveals that, aside from silencing of genes with complementary sequences, dsRNA-induced RNAi affects the production of heritable endogenous small RNAs, which regulate the expression of RNAi factors,” wrote the authors of the Cell paper. “Manipulating genes in this feedback pathway changes the duration of heritable silencing.”
The scientists also indicated that specific genes, which they named MOTEK (Modified Transgenerational Epigenetic Kinetics), were involved in turning on and off epigenetic transmissions.
“We discovered how to manipulate the transgenerational duration of epigenetic inheritance in worms by switching ‘on’ and ‘off’ the small RNAs that worms use to regulate genes,” said Dr. Rechavi. “These switches are controlled by a feedback interaction between gene-regulating small RNAs, which are inheritable, and the MOTEK genes that are required to produce and transmit these small RNAs across generations.
“The feedback determines whether epigenetic memory will continue to the progeny or not, and how long each epigenetic response will last.”
Although its research was conducted on worms, the team believes that understanding the principles that control the inheritance of epigenetic information is crucial for constructing a comprehensive theory of heredity for all organisms, humans included.
“We are now planning to study the MOTEK genes to know exactly how these genes affect the duration of epigenetic effects,” said Leah Houri-Ze’evi, a Ph.D. student in Dr. Rechavi’s lab and first author of the paper. “Moreover, we are planning to examine whether similar mechanisms exist in humans.”
The current study notes that the active control of transgenerational effects could be adaptive, because ancestral responses would be detrimental if the environments of the progeny and the ancestors were different.
A Tunable Mechanism Determines the Duration of the Transgenerational Small RNA Inheritance in C. elegans
- •New RNAi episodes extend the duration of heritable epigenetic effects
- •Amplification of heritable exo-siRNAs occurs at the expense of endo-siRNAs
- •A feedback between siRNAs and RNAi genes determines heritable silencing duration
- •Modified transgenerational epigenetic kinetics (MOTEK) mutants are identified
In C. elegans, small RNAs enable transmission of epigenetic responses across multiple generations. While RNAi inheritance mechanisms that enable “memorization” of ancestral responses are being elucidated, the mechanisms that determine the duration of inherited silencing and the ability to forget the inherited epigenetic effects are not known. We now show that exposure to dsRNA activates a feedback loop whereby gene-specific RNAi responses dictate the transgenerational duration of RNAi responses mounted against unrelated genes, elicited separately in previous generations. RNA-sequencing analysis reveals that, aside from silencing of genes with complementary sequences, dsRNA-induced RNAi affects the production of heritable endogenous small RNAs, which regulate the expression of RNAi factors. Manipulating genes in this feedback pathway changes the duration of heritable silencing. Such active control of transgenerational effects could be adaptive, since ancestral responses would be detrimental if the environments of the progeny and the ancestors were different.

Think of a sentence you just read. Like that one. You’re now using your working memory, a critical brain system that’s roughly analogous to RAM memory in a computer.
Neuroscientists have believed that as information is held in working memory, brain cells associated with that information must be firing continuously. Not so — they fire in sporadic, coordinated bursts, says Earl Miller, the Picower Professor in MIT’s Picower Institute for Learning and Memory and the Department of Brain and Cognitive Sciences.
That makes sense. These different bursts could help the brain hold multiple items in working memory at the same time, according to the researchers. “By having these different bursts coming at different moments in time, you can keep different items in memory separate from one another,” says Miller, the senior author of a study that appears in the March 17 issue of Neuron.
Bursts of activity, not averaged activity
So why hasn’t anyone noticed this before? Because previous studies averaged the brain’s activity over seconds or even minutes of performing the task, Miller says. “We looked more closely at this activity, not by averaging across time, but from looking from moment to moment. That revealed that something way more complex is going on.”
To do that, Miller and his colleagues recorded neuron activity in animals as they were shown a sequence of three colored squares, each in a different location. Then, the squares were shown again, but one of them had changed color. The animals were trained to respond when they noticed the square that had changed color — a task requiring them to hold all three squares in working memory for about two seconds.
The researchers found that as items were held in working memory, ensembles of neurons in the prefrontal cortex were active in brief bursts, and these bursts only occurred in recording sites in which information about the squares was stored. The bursting was most frequent at the beginning of the task, when the information was encoded, and at the end, when the memories were read out.
The findings fit well with a model that Lundqvist had developed as an alternative to the model of sustained activity as the neural basis of working memory. According to the new model, information is stored in rapid changes in the synaptic strength of the neurons. The brief bursts serve to “imprint” information in the synapses of these neurons, and the bursts reoccur periodically to reinforce the information as long as it is needed.
The bursts create waves of coordinated activity at the gamma frequency (45 to 100 hertz), like the ones that were observed in the data. These waves occur sporadically, with gaps between them, and each ensemble of neurons, encoding a specific item, produces a different burst of gamma waves, like a fingerprint.
Implications for other cognitive functions
The findings suggest that it would be worthwhile to look for this kind of cyclical activity in other cognitive functions such as attention, the researchers say. Oscillations like those seen in this study may help the brain to package information and keep it separate so that different pieces of information don’t interfere with each other.
Robert Knight, a professor of psychology and neuroscience at the University of California at Berkeley, says the new study “provides compelling evidence that nonlinear oscillatory dynamics underlie prefrontal dependent working memory capacity.”
“The work calls for a new view of the computational processes supporting goal-directed behavior,” adds Knight, who was not involved in the research. “The control processes supporting nonlinear dynamics are not understood, but this work provides a critical guidepost for future work aimed at understanding how the brain enables fluid cognition.”
editor’s comments: I’m curious how this relates to forgetting things to make space to learn new things. (Turns out the hippocampus works closely with the prefrontal cortex in working memory, as this open-access Nature paper explains.) Also, what’s the latest on how many things we can keep in working memory (it used to be around five)? Is that number limited by forgetting or by the capacity to differentiate different spike trains? Any tricks for keeping more things in working memory?
Abstract of Gamma and Beta Bursts Underlie Working Memory
Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45–100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20–35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity.
Gamma and Beta Bursts Underlie Working Memory
Open Archive
Open Archive
Open Archive

Skyler Jackman and colleagues studied the phenomenon known as synaptic facilitation by using light to turn neuronal connections on and off. The optogenetic protein used in this technique appears yellow. Image: Regehr lab

The gene is synaptotagmin 7 (syt7 for short), a calcium sensor that dynamically increases neurotransmitter release; each release serves to strengthen communication between neurons for about a second. These swift releases are thought to be critical for the brain’s ability to perform computations involved in short-term memory, spatial navigation and sensory perception.
A team of researchers who made this discovery was led by Skyler Jackman, a postdoctoral researcher in the lab of Wade Regehr, professor of neurobiology at HMS. They recently reported their findings in Nature.
Nature 529, 88–91 (07 January 2016) doi:10.1038/nature16507
It has been known for more than 70 years that synaptic strength is dynamically regulated in a use-dependent manner1. At synapses with a low initial release probability, closely spaced presynaptic action potentials can result in facilitation, a short-term form of enhancement in which each subsequent action potential evokes greater neurotransmitter release2. Facilitation can enhance neurotransmitter release considerably and can profoundly influence information transfer across synapses3, but the underlying mechanism remains a mystery. One proposed mechanism is that a specialized calcium sensor for facilitation transiently increases the probability of release2, 4, and this sensor is distinct from the fast sensors that mediate rapid neurotransmitter release. Yet such a sensor has never been identified, and its very existence has been disputed5, 6. Here we show that synaptotagmin 7 (Syt7) is a calcium sensor that is required for facilitation at several central synapses. In Syt7-knockout mice, facilitation is eliminated even though the initial probability of release and the presynaptic residual calcium signals are unaltered. Expression of wild-type Syt7 in presynaptic neurons restored facilitation, whereas expression of a mutated Syt7 with a calcium-insensitive C2A domain did not. By revealing the role of Syt7 in synaptic facilitation, these results resolve a longstanding debate about a widespread form of short-term plasticity, and will enable future studies that may lead to a deeper understanding of the functional importance of facilitation.
“We really think one of the most important things the brain can do is change the strength of connections between neurons,” Jackman said. “Now that we have a tool to selectively turn off facilitation, we can test some long-held beliefs about its importance for thinking and working memory.”
Although synaptic facilitation was first described 70 years ago by Te-Pei Feng, known as the father of Chinese physiology, Jackman and colleagues were able to identify the mechanism behind synaptic strengthening by taking advantage of advanced laboratory techniques unavailable to previous generations of scientists.
A dozen years ago, Regehr suspected that syt7 might drive this synaptic strengthening process: The gene turns on slowly and then ramps up in speed, which would fit gradual release of neurotransmitters.
About eight years ago scientists in another lab engineered “knockout” mice that lack the syt7 gene, setting the stage for experiments to test Regehr’s speculations. But when grown in a lab dish, neurons from these knockout mice behaved no differently than other neurons; results that, at the time, dashed hopes that syt7 could explain the synaptic boost.
A year ago Jackman took another tack. He tested synaptic connections in brain tissue taken from the knockout mice but still having intact brain circuits, an experiment more reflective of how neurons and synapses might work in a living animal.
“It was striking. It was amazing,” Jackman said. “As soon as we probed these connections we saw there was a huge deficit, a complete lack of synaptic facilitation in the knockout mice, completely different from their wild-type brothers and sisters.”
To be certain that knocking out syt7 was responsible for this change, Jackman had to find a way to reinsert syt 7 and restore its function. He did that by using optogenetics, a genetic manipulation tool that allows neuronal connections to be turned on and off with light. He augmented this technique with bicistronic expression, a method that packages one optogenetic protein and one syt7protein into a single virus that infects all neurons equally. Using these two techniques, Jackman could selectively study what happened when syt7 was reinserted into a neuron and measure its effects reliably.
We need to forget things to make space to learn new things, scientists discover
http://www.kurzweilai.net/we-need-to-forget-things-to-make-space-to-learn-new-things-scientists-discover
The three routes into the hippocampus seem to be linked to different aspects of learning: forming memories (green), recalling them (yellow) and forgetting them (red) (credit: John Wood)
While you’re reading this (and learning about this new study), your brain is actively trying to forget something.
We apologize, but that’s what scientists at the European Molecular Biology Laboratory (EMBL) and the University Pablo Olavide in Sevilla, Spain, found in a new study published Friday (March 18) in an open-access paper in Nature Communications.
“This is the first time that a pathway in the brain has been linked to forgetting — to actively erasing memories,” says Cornelius Gross, who led the work at EMBL.
Working with mice, Gross and colleagues studied the hippocampus, a region of the brain known to help form memories. Information enters this part of the brain through three different routes. As memories are formed, connections between neurons along the “main” route become stronger.
When they blocked this main route (dentate gyrus granule cells), the scientists found that the mice were no longer capable of learning (in this case, a specific Pavlovian response).* But surprisingly, blocking that main route also resulted in its connections weakening, meaning the memory was actually being erased.
Limited space in the brain
Gross proposes that one explanation: “There is limited space in the brain, so when you’re learning, you have to weaken some connections to make room for others,” says Gross.
Interestingly, this active push for forgetting only happens in learning situations. When the scientists blocked the main route into the hippocampus under other circumstances, the strength of its connections remained unaltered.
The findings were made using genetically engineered mice, but the scientists demonstrated that it is possible to produce a drug that activates this “forgetting” route in the brain without the need for genetic engineering. This approach, they say, might help people forget traumatic experiences.
* But if the mice had learned that association before the scientists stopped information flow in that main route, they could still retrieve that memory. This confirmed that this route is involved in forming memories, but isn’t essential for recalling those memories. The latter probably involves the second route into the hippocampus, the scientists surmise.
Abstract of Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells
The hippocampus is critical for the acquisition and retrieval of episodic and contextual memories. Lesions of the dentate gyrus, a principal input of the hippocampus, block memory acquisition, but it remains unclear whether this region also plays a role in memory retrieval. Here we combine cell-type specific neural inhibition with electrophysiological measurements of learning-associated plasticity in behaving mice to demonstrate that dentate gyrus granule cells are not required for memory retrieval, but instead have an unexpected role in memory maintenance. Furthermore, we demonstrate the translational potential of our findings by showing that pharmacological activation of an endogenous inhibitory receptor expressed selectively in dentate gyrus granule cells can induce a rapid loss of hippocampal memory. These findings open a new avenue for the targeted erasure of episodic and contextual memories.
references:
- Noelia Madroñal, José M. Delgado-García, Azahara Fernández-Guizán, Jayanta Chatterjee, Maja Köhn, Camilla Mattucci, Apar Jain, Theodoros Tsetsenis, Anna Illarionova, Valery Grinevich, Cornelius T. Gross, Agnès Gruart. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nature Communications, 2016; 7: 10923 DOI: 10.1038/NCOMMS10923 (open access)
- Noelia Madroñal, José M. Delgado-García, Azahara Fernández-Guizán, Jayanta Chatterjee, Maja Köhn, Camilla Mattucci, Apar Jain, Theodoros Tsetsenis, Anna Illarionova, Valery Grinevich, Cornelius T. Gross, Agnès Gruart. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nature Communications, 2016; 7: 10923 Supplementary Information (open access)
Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells
Noelia Madroñal, José M. Delgado-García, Azahara Fernández-Guizán, Jayanta Chatterjee, Maja Köhn, Camilla Mattucci, et al.
Nature Communications7,Article number:10923 http://www.nature.com/ncomms/2016/160318/ncomms10923/full/ncomms10923.html
The hippocampus is an evolutionarily ancient part of the cortex that makes reciprocal excitatory connections with neocortical association areas and is critical for the acquisition and retrieval of episodic and contextual memories. The hippocampus has been the subject of extensive investigation over the last 50 years as the site of plasticity thought to be critical for memory encoding. Models of hippocampal function propose that sensory information reaching the hippocampus from the entorhinal cortex via dentate gyrus (DG) granule cells is encoded in CA3 auto-association circuits and can in turn be retrieved via Schaffer collateral (SC) projections linking CA3 and CA1 (refs 1, 2, 3, 4; Fig. 1a). Learning-associated plasticity in CA3–CA3 auto-associative networks encodes the memory trace, and plasticity in SC connections is necessary for the efficient retrieval of this trace2, 5, 6, 7, 8, 9, 10. In addition, both CA3 and CA1 regions receive direct, monosynaptic inputs from entorhinal cortex that are thought to convey information about ongoing sensory inputs that could modulate CA3 memory trace acquisition and/or retrieval via SC (refs 11,12, 13; Fig. 1a). In DG granule cells, sensory information is thought to undergo pattern separation into orthogonal cell ensembles before encoding (or reactivating, in the case of retrieval) memories in CA3 (ref. 14). However, how the hippocampus executes both the acquisition and recall of memories stored in CA3 remains a question of debate with some models attributing a role for DG inputs in memory acquisition, but not retrieval2, 15, 16, 17.
(a) The hippocampal tri-synaptic circuit receives PP inputs from entorhinal cortex to DG, CA3 and CA1. (b) A stimulating electrode was implanted in the PP and a recording electrode in CA3 pyramidal layer. (c) Strength of CA3 pyramidal layer fEPSPs evoked in anaesthetized mice by electrical stimulation of PP inputs showed fast and slow latency population spike components corresponding to direct PP-CA3 and indirect PP–DG-CA3 inputs, respectively. Systemic administration of the selective Htr1a agonist, 8-OH-DPAT (0.3 mg kg−1, subcutaneous), to Htr1aDG (Tg) mice caused a rapid and selective decrease in the long-latency component that persisted for several hours. Quantification indicated a significant decrease in DG neurotransmission following agonist treatment of Htr1aDG, but not Htr1aKO (KO) littermates or vehicle treated wild-type mice that reached 80% suppression and persisted for >2 h (mean±s.e.m.; n=10;*P<0.05; two-way analysis of variance followed by Holm–Sidak post hoc test). (d) Representative fEPSPs evoked at CA3 pyramidal layer after stimulation of PP inputs before and after agonist treatment. The fast and the slow latency population spike components are indicated (black arrow, short; grey arrow, long).
Figure 2
Inhibition of DG induces rapid and persistent loss of hippocampal memory and plasticity.
Figure 4
Loss of plasticity depends on entorhinal cortex inputs and local adenosine signalling.
In the present study we examined the contribution of DG granule cells to learning and recall and its associated synaptic plasticity in animals that had previously acquired a hippocampal memory. We found that transient pharmacogenetic inhibition of DG granule cells did not impair conditioned responding to CS presentation nor alter SC synaptic plasticity demonstrating that DG is not required for memory recall (Fig. 3c,d). However, when DG inhibition occurred during paired presentation of CS and US, we observed a rapid loss of SC synaptic plasticity and conditioned responding to CS (Fig. 2d,e and Supplementary Fig. 3). Strikingly, the synaptic plasticity and behavioural impairment persisted in the absence of further stimulus presentation and later relearning occurred at a rate indistinguishable from initial learning, suggesting a loss of the memory trace (Fig. 2f,g).
One possible explanation for the memory loss seen on DG inhibition is that presentation of paired CS–US has a dual effect on CA1 plasticity, on the one hand strengthening SC synapses via a DG-dependent mechanism (indirect inputs to CA1 via the tri-synaptic circuit) and on the other hand weakening SC synapses in a non-DG-dependent manner (direct PP-CA1 inputs). This explanation is consistent with several studies in the literature reporting mechanistic and functional differences between the direct and the indirect inputs to CA1 (refs 12, 13, 30, 31, 32). Furthermore, earlier in vitro12, 23 and in vivo33 electrophysiology studies found that stimulation of PP-CA1 inputs to the hippocampus could depotentiate synaptic plasticity that had been previously acquired at SC synapses suggesting that the direct PP pathway might promote depotentiation during hippocampal learning. To test this possibility, we used dual, orthogonal pharmacogenetic inhibition of DG and entorhinal cortex to show that the memory loss phenomenon we observed depended on PP inputs (Fig. 4e). Furthermore, one of the earlier studies23 had shown that PP stimulation-induced SC depotentiation could be inhibited by blockade of adenosine A1 receptors, but not several other receptors, and we found that bilateral administration of DPCPX to the CA1 region of the hippocampus blocked synaptic depotentiation in our model (Fig. 4g).
Our data lead us to propose a novel function for PP-CA1 inputs to the hippocampus. During CS–US presentation, but not during presentation of unpaired CS–US or CS alone, information arriving via this pathway actively promotes depotentiation of SC synapses, while information arriving via the DG pathway opposes this depotentiation. Thus, in an animal that has successfully acquired a hippocampal-dependent memory, and in which the direct and indirect pathways are intact, SC synaptic strength is stable and memories can be retrieved. However, when the DG pathway is blocked, as we have done artificially in our study, depotentiation is favoured and memory is lost (see scheme, Fig. 6). The precise function of PP-dependent SC depotentiation remains unclear at this point, but we speculate that it may play a role in weakening previously acquired associations to facilitate the encoding of new memories. Existing data show that selective blockade of synaptic activity in entorhinal cortex neurons projecting to CA1 impairs the acquisition of trace fear conditioning34 and support our hypothesis of a positive role for this pathway in learning13, 30, 32, 33. Moreover, our DPCPX experiments suggest that blockade of the depotentiation mechanism promotes SC synaptic plasticity during CS–US presentation in otherwise intact animals (Fig. 4g). However, further loss and gain-of-function manipulations of this pathway coupled with in vivoelectrophysiology and learning behaviour are needed to directly test a role of PP-CA1 inputs in memory clearing.
Figure 6
Model for function of PP-CA1 inputs to the hippocampus.
Area CA1 of the hippocampus receives information directly from the entorhinal cortex (direct PP-CA1 pathway) and also indirectly via the tri-synaptic circuit. (a) Presentation of paired CS–US promotes potentiation of SC synapses (+) via the indirect pathway depotentiation of SC synapses (–) via the PP-CA1 pathway. In an animal having successfully undergone learning, potentiation and depotentiation are balanced, SC synaptic strength is stable and memories can be retrieved. (b) Inhibition of DG during CS–US presentation suppresses potentiation via the indirect pathway, unmasking depotentiation of SC synapses and promoting memory loss.
Our finding that DG granule cells are not required for retrieval of hippocampal memory is consistent with previous data arguing that retrieval of associative information encoded in CA3–CA3 and SC plasticity is achieved via direct PP projections to CA3 (refs 1, 2, 3, 4, 35, 36, 37, 38). However, our data appear to contradict at least one recent study demonstrating a role for DG granule cells in retrieval during contextual fear conditioning39. We believe this discrepancy is due to a requirement for DG granule cells in the processing of the contextual CS (ref. 40). However, to rule out the possibility that other methodological differences between the studies underlie the discrepancy, it would be important to determine whether the cell-type specific optogenetic inhibition method used in their study left intact the recall of hippocampal-dependent memories for discrete cues.
Our study raises several questions. First, while we show SC depotentiation is adenosine receptor dependent, the location of adenosine signalling is not clear. Adenosine A1 receptors are expressed highly in CA3 pyramidal cells as well as more modestly in CA1 (ref. 28), and a study in which this receptor was selectively knocked out in one or the other of these structures demonstrated a role for presynaptic CA3, but not postsynaptic CA1 receptors in dampening SC neurotransmission41suggesting a presynaptic mechanism for our effect. The source of adenosine, on the other hand, could involve pre- and/or postsynaptic release as well as release from non-neuronal cells such as astrocytes27, 42. Second, although our DPCPX experiment pointed to a role for PP-CA1 projections in SC depotentiation, our entorhinal cortex pharmacogenetic inhibition experiment did not allow us to distinguish between contributions of PP-CA1 and PP-CA3 inputs. Although we cannot rule out a contribution of PP-CA3 projections to SC depotentiation, earlier in vitro and in vivo electrophysiology studies clearly demonstrate a role for PP-CA1 in SC depotentiation12, 22, 33. Third, the method we used to assess SC postsynaptic strength, namely electrical stimulation evoked field potentials does not allow us to rule out that changes in synaptic plasticity at non-SC inputs underlie our plasticity effects. Experiments using targeted optogenetic stimulation of CA3 efferents could be used to more selectively measure SC synaptic strength. Fourth, our observation that SC depotentiation and memory loss occurred only during paired, but not unpaired CS–US presentation (Fig. 2d,e) suggests that the memory loss phenomenon we describe is distinct from other well-described avenues for memory degradation, including enhancement of extinction43 and blockade of reconsolidation44. Finally, our findings demonstrating generalization of DG inhibition-induced memory loss across tasks coupled with our identification of an endogenous pharmacological target that can induce similar memory loss raise the possibility that the novel memory mechanism we have uncovered may be useful for erasing unwanted memories in a clinical setting.
Leave a Reply