
The Promise of Gene Editing for Slowing Progression of Disease: Translational Application toward Cure of Disease
Reporters: Gerard Loiseau, ESQ and Aviva Lev-Ari, PhD, RN
The CRISPR genome-editing technology, which was developed by Jennifer Doudna at University of California at Berkeley, was picked as the “Breakthrough of the Year” scientific development by Science.
the “guide RNA” used to target a specific DNA sequence and the DNA-cutting enzyme, or nuclease, usually one called Cas9. “It’s going to be like PCR, a tool in the toolbox,” says Jennifer Doudna of the University of California, Berkeley, whose group, in collaboration with one led by Emmanuelle Charpentier, now at the Max Planck Institute for Infection Biology in Berlin, published the first report that CRISPR could cut specific DNA targets.
People’s choice
Visitors to Science‘s website voted on our 10 Breakthrough finalists. Their top picks:
- Pluto—35%
- CRISPR—20%
- Lymphatic system in the central nervous system—15%
- Ebola vaccine—10%
- (Tie) Psychology replication/quantum entanglement—6%
https://plainmath.me/and-sciences-breakthrough-of-the-year-is/
Biologists continue to hone their tools for deleting, replacing or otherwise editing DNA and a strategy called CRISPR has quickly become one of the most popular ways to do genome engineering. Utilizing a modified bacterial protein and a RNA that guides it to a specific DNA sequence, the CRISPR system provides unprecedented control over genes in many species, including perhaps humans. This control has allowed many new types of experiments, but also raised questions about what CRISPR can enable. Science collects some of its recent research papers, commentary and news articles on CRISPR and its implications below.
In short, it’s only slightly hyperbolic to say that if scientists can dream of a genetic manipulation, CRISPR can now make it happen. At one point during the human gene-editing summit, Charpentier described its capabilities as “mind-blowing.” It’s the simple truth. For better or worse, we all now live in CRISPR’s world.
https://plainmath.me/and-sciences-breakthrough-of-the-year-is/
Podcast: Listen as Science editors discuss this year’s breakthrough, breakdowns, and top news stories
https://plainmath.me/and-sciences-breakthrough-of-the-year-is/
Gene editing using CRISPR-Cas9
“This is different from other therapeutic approaches, because it eliminates the cause of the disease,” said senior author Dr. Eric Olson, Chairman of Molecular Biology, and Co-Director of the Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center at UT Southwestern.
“The recent groundbreaking discoveries from the Olson laboratory using genome editing to correct the genetic mutation that causes DMD have accelerated the race to find a cure for this deadly disease,” said Dr. Pradeep Mammen, Associate Professor of Internal Medicine and Co-Director of the UTSW Wellstone Center. “The challenge now lies before Wellstone Center researchers to translate these discoveries in the mouse model of DMD into a therapy for patients with DMD.”
Gene-editing technique successfully stops progression of Duchenne Muscular Dystrophy (DMD)

DALLAS – Dec. 31, 2015 – Using a new gene-editing technique, a team of scientists from UT Southwestern Medical Center stopped progression of Duchenne muscular dystrophy (DMD) in young mice.
If efficiently and safely scaled up in DMD patients, this technique could lead to one of the first successful genome editing-based treatments for this fatal disease, researchers said.
DMD, the most common and severe form of muscular dystrophy among boys, is characterized by progressive muscle degeneration and weakness. It is caused by mutations in the X-linked DMD gene that encodes the protein dystrophin. The disease affects one in 3,500 to 5,000 boys, according to the Centers for Disease Control and Prevention and other estimates, and often leads to premature death by the early 30s.
Although the genetic cause of DMD has been known for nearly 30 years, no effective treatments exist. The disease breaks down muscle fibers and replaces them with fibrous or fatty tissue, causing the muscle to gradually weaken. This condition often results in heart muscle disease, or cardiomyopathy, the leading cause of death in these patients.
In the study published today in Science, UTSW researchers used a gene-editing approach to permanently correct the DMD mutation that causes the disease in young mice.
“This is different from other therapeutic approaches, because it eliminates the cause of the disease,” said senior author Dr. Eric Olson, Chairman of Molecular Biology, and Co-Director of the Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center at UT Southwestern.
In 2014, Dr. Olson’s team first used this technique – called CRISPR/Cas9-mediated genome editing – to correct the mutation in the germ line of mice and prevent muscular dystrophy. This paved the way for novel genome editing-based therapeutics in DMD. It also raised several challenges for clinical applications of gene editing. Since germ line editing is not feasible in humans, strategies would need to be developed to deliver gene-editing components to postnatal tissues.
SOURCE
Leave a Reply