Create a personalized high-performance computer by crossing the barriers between clouds
Reporter: Aviva Lev-Ari, PhD, RN
The Information Technology Research Institute of the National Institute of Advanced Industrial Science and Technology has developed a technology with which once an environment to perform high-performance computing has been established, a virtual cluster-type computer can easily be built on a different cloud and made available for immediate use.
Generally, in high-performance computing, cluster-type computers where many computers are bundled and run as a single computer are used. However, their hardware configuration is not uniform. On the other hand, virtual computers that are not dependent on hardware configuration are provided in clouds, and by bundling them together, a virtual cluster-type computer can be created. However, in this case, the user had to re-install software or reset the settings for a different cloud. Therefore, a technology to build a virtual cluster-type computer based on the design concept of “Build Once, Run Everywhere” has been developed. Once the environment to run the application has been established it may be run on any cloud, be it a private, commercial, or other cloud. Furthermore, since there are no constraints on the number of virtual computers that can be incorporated into the cluster, when the computing power is insufficient, an even larger virtual cluster-type computer can be formed on another cloud that allows the use of even more virtual computers, but allowing it to be used in exactly the same manner.
A virtual cluster-type computer was formed on AIST’s private cloud, AIST Super Green Cloud (ASGC), and the ability to use it on Amazon EC2, a commercial cloud, was verified. With this technology, users and application fields that could not use high-performance computing previously can now use high-performance computing. Thus, the developed technology is expected to contribute to the enhancement of industrial competitiveness.
There are many research organizations and companies that require high-performance computing, such as in the development of automobiles and for drug discovery. Conventionally, each organization prepared cluster-type computers within their organization. This required the introduction of a system with even higher performance to solve problems exceeding its computing capacity. Further, it was not readily available for introduction when it was required.
In clouds now widely available today, computing performance can be increased through the addition of computers by bundling virtual computers to form a cluster-type computer. However, when the built environment is to be re-created on a different cloud, it required the software to be re-installed and the settings reconfigured, necessitating extra time, labor, and cost.
Furthermore, because initial introduction and operating costs for cluster-type computers are high, the environment for high-performance computing could not be maintained, especially for small- and medium-scale enterprises. Expansion of the fields in which high-performance computing can be applied in support of such users is required for the enhancement of industrial competitiveness.
AIST is conducting R&D aimed at achieving a high-performance computing infrastructure with both the convenience to run on any cluster-type computer once a high-performance computing application-executing environment has been created, and high computing performance. In the process, R&D was conducted under the concept of separating the application-executing environment from actual machines by virtualization using cloud technologies to establish cluster-type computers on various clouds as required. In addition, although a cloud is established with virtualization technology, in the field of high-performance computing, there has been an issue of a drop in computing performance when virtualized, which has hindered its popularization. Therefore, evaluation of the effects of virtualization when executing high-performance computing applications was conducted in detail and technologies to reduce the deterioration of performance caused by virtualization have been developed.
Source: phys.org
Leave a Reply