Renal Function Biomarker, β-trace protein (BTP) as a Novel Biomarker for Cardiac Risk Diagnosis in Patients with Atrial Fibrilation
Curator: Aviva Lev-Ari, PhD, RN
β-Trace Protein and Prognosis in Patients With Atrial Fibrillation Receiving Anticoagulation Treatment
From the University of Birmingham Centre for Cardiovascular Sciences (Drs Apostolakis and Lip), City Hospital, Birmingham, England; and the Division of Cardiovascular Medicine (Drs Sullivan and Olshansky), University of Iowa Hospitals and Clinics, Iowa City, IA.
Correspondence to: Gregory Y. H. Lip, MD, University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Dudley Rd, Birmingham, B18 7QH, England; e-mail: g.y.h.lip@bham.ac.uk
Abstract
Background: Atrial fibrillation (AF) is associated with a high risk of mortality and morbidity and it commonly coexists with chronic kidney disease. A biomarker of renal function, β-trace protein (BTP), has been implicated in the progression of cardiovascular disease. The aim of our study was to evaluate the association of BTP with adverse cardiovascular events, bleeding, and mortality in patients with AF.
Methods: In a consecutive cohort of patients with nonvalvular AF receiving anticoagulation treatment, plasma BTP was determined using an automated nephelometer BN ProSpec System (Siemens) and related to estimated glomerular filtration rate (eGFR). We recorded adverse cardiovascular events (stroke, acute coronary syndrome, and acute pulmonary edema), major bleeding, and mortality.
Results: We included 1,279 patients (48.6% men), aged 76 years (IQR, 71-81 years), who were followed up for 996 days (IQR, 802-1,254 days). During the follow-up, there were 150 cardiovascular events (annual rate, 3.99%), 57 embolisms (annual rate, 1.54%), and 114 major bleeding events (annual rate, 3.04%), and 161 patients died (annual rate, 4.32%). BTP levels were inversely associated with eGFR (P < .001). High BTP concentrations were significantly associated with embolic events (hazard ratio [HR], 4.64 [1.98-10.86]; P < .001), composite adverse cardiovascular events (HR, 1.93 [1.31-2.85]; P = .001), and mortality (HR, 2.08 [1.49-2.90]; P < .001), even after adjusting for CHAD2DS2-VASc (congestive heart failure, hypertension, age ≥ 75 years [doubled], diabetes mellitus, stroke [doubled], vascular disease, age 65 to 74 years, sex category) score and renal function. High BTP was associated with major bleeding events (HR, 1.88 [1.18-3.00]; P = .008), even after adjusting for the HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or redisposition, labile international normalized ratio, elderly [> 65 years], drugs/alcohol concomitantly) score.
Conclusions: We suggest that BTP, a proposed renal damage biomarker, may be a novel predictor of adverse cardiovascular events, major bleeding, and mortality in patients with AF. BTP may help refine clinical risk stratification in these patients.
SOURCE
http://journal.publications.chestnet.org/article.aspx?articleid=1730537
Editorials | November 2013
Predicting the Quality of Anticoagulation During Warfarin Therapy:The Basis for an Individualized Approach
From the Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna.
Correspondence to: Giuseppe Boriani, MD, PhD, Institute of Cardiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; e-mail: giuseppe.boriani@unibo.it
Biomarker Can Predict Events in Afib Patients
Published: Nov 6, 2013 | Updated: Nov 7, 2013

Beta-trace protein (BTP), a biomarker that has been associated with both kidney damage and an increased cardiovascular risk, may help identify high-risk atrial fibrillation patients, researchers found.
Among patients with atrial fibrillation who were on stable oral anticoagulant therapy, high plasma levels of the protein were associated with significantly elevated risks of embolic events, adverse cardiovascular events, death, and major bleeding, according to Gregory Lip, MD, of the University of Birmingham in England, and colleagues.
Also, adding information about BTP levels modestly improved the predictive ability of models that included two established risk scores — CHAD2DS2-VASc and HAS-BLED — as indicated by higher C-statistics, they reported in the Nov. 5 issue of CHEST.
“This raises the possibility that BTP may help refine the clinical risk stratification for thrombotic or hemorrhagic events and mortality in these patients,” they wrote.
BTP has been proposed has a marker of renal damage, and it has also been associated with inflammation, atherogenesis, angina, vasomotor reactivity, and hypertension. Previous studies have also identified a relationship between BTP and the progression of cardiovascular disease.
In the current study, Lip and colleagues explored whether BTP levels were related to outcomes in 1,279 patients with nonvalvular atrial fibrillation who were on stable oral anticoagulant therapy with an international normalized ratio (INR) of 2.0 to 3.0. Their average age was 76.
The median estimated glomerular filtration rate at baseline was 71.28 mL/min/1.73 m2; BTP levels and renal function were inversely related (P<0.001).
The BTP cut-offs with the best sensitivity and specificity for predicting each of the endpoints varied — 0.561 mg/L for adverse cardiovascular events, 0.556 mg/L for embolic events, 0.670 mg/L for mortality, and 0.573 mg/L for major bleeds.
During a median follow-up of 2.7 years, cardiovascular events occurred at a rate of 3.99% per year, embolisms at 1.54% per year, deaths at 4.32% per year, and major bleeds at 3.04% per year.
After adjustment for renal function and the CHAD2DS2-VASc risk score — which incorporates congestive heart failure, hypertension, age, diabetes, stroke, vascular disease, and sex — a BTP level above the cutoff was associated with increased risks of cardiovascular events (HR 1.93, 95% CI 1.31-2.85), embolic events (HR 4.64, 95% CI 1.98-10.86), and mortality (HR 2.08, 95% CI 1.49-2.90).
Also, after adjustment for the HAS-BLED risk score — which takes into account hypertension, abnormal renal and liver function, stroke, bleeding history or predisposition, labile INR, age over 65, and concomitant use of drugs and alcohol — a high BTP level was associated with a greater risk of major bleeding (HR 1.88, 95% CI 1.18-3.00).
“We suggest that BTP, a proposed renal damage biomarker, may be a novel predictor of adverse cardiovascular events, major bleeding, and mortality in patients with atrial fibrillation,” the authors wrote.
They acknowledged some limitations of the analysis, however, including possible selection bias because all of the patients were on stable oral anticoagulant therapy, the measurement of renal function and BTP levels at a single time point only, and the exclusion of patients with end-stage renal disease.
SOURCE
http://www.medpagetoday.com/Cardiology/Arrhythmias/42751
These are promising early results, but the data include plenty of limitations. As the article notes, the researchers themselves acknowledge that their work only looked at patients on a regular oral anticlotting drug at a certain point in time. Further research must include a broader class of patients to determine if BTP can be a reliable biomarker to help identify atrial fibrillation patients with an added risk of other health problems.
As hard as it might be to spot atrial fibrillation patients at risk of more problems, doctors struggle to definitively identify the condition in the first place and apply targeted treatments. The med tech industry, meanwhile, is trying to fill the gap. Topera, a 2013 Fierce 15 winner, recently won U.S. and EU approval for a 3-D device and mapping tool designed to better detect cardiac rhythm problems such as atrial fibrillation in order to enable more targeted and accurate treatment. In late August, St. Jude Medical ($STJ) snatched up Endosense, which makes a cutting-edge irrigated ablation catheter designed to treat atrial fibrillation, and rival companies are developing or promoting electrophysiology treatments and other devices for the condition.
SOURCE
From: FierceBiomarkers <editors@fiercebiomarkers.com>
Reply-To: <editors@fiercebiomarkers.com>
Date: Wednesday, November 13, 2013 10:31 AM
To: AvivaLev-Ari@alum.berkeley.edu
Subject: | 11.13.13 | Investigators flag new biomarkers for atrial fib
Articles related to Diagnosis of Atrial Fibrilation published on this Open Access Online Scientific Journal include the following:
Genetic Analysis of Atrial Fibrillation, Larry H Bernstein, MD, FCAP and Aviva-Lev Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/10/27/genetic-analysis-of-atrial-fibrillation/
Cardiac Contractility & Myocardium Performance: Ventricular Arrhythmiasand Non-ischemic Heart Failure – Therapeutic Implications for Cardiomyocyte Ryanopathy (Calcium Release-related Contractile Dysfunction) and Catecholamine Responses
Justin Pearlman, MD, PhD, FACC, Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/08/28/cardiac-contractility-myocardium-performance-ventricular-arrhythmias-and-non-ischemic-heart-failure-therapeutic-implications-for-cardiomyocyte-ryanopathy-calcium-release-related-contractile/
Oxidized Calcium Calmodulin Kinase and Atrial Fibrillation, Larry H. Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
http://pharmaceuticalintelligence.com/2013/10/26/oxidized-calcium-calmodulin-kinase-and-atrial-fibrillation/
Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis, Aviva Lev-Ari, PhD, RN
On Devices and On Algorithms: Prediction of Arrhythmia after Cardiac Surgery and ECG Prediction of an Onset of Paroxysmal Atrial Fibrillation, Justin D. Pearlman, MD, PhD, FACC and Aviva Lev-Ari, PhD, RN
Leave a Reply