Fibrin-coated Electrospun Polylactide Nanofibers Potential Applications in Skin Tissue Engineering
Reported by: Irina Robu, PhD
Fibrin plays an essential role during wound healing and skin regeneration and is often applied for the treatment of skin injuries. Fibrin is formed after thrombin cleavage of fibrinopeptide A from fibrinogen Aalpha-chains, thus initiating fibrin polymerization. Double-stranded fibrils form through end-to-middle domain (D:E) associations, and concomitant lateral fibril associations and branching create a clot network. In addition, its primary role is to provide scaffolding for the intravascular thrombus.
Dr. Lucie Bacakova and her colleagues from Department of Biomaterials and Tissue engineering at Czech Academy of Sciences prepared electrospun nanofibrious membranes made from poly(L-lactide) modified with a thin fibrin nanocoating. The cell-free fibrin nanocating remained stable in cell culture medium for 14 days and did not change its morphology. The rate of fibrin degradation is correlated to the degree of cell proliferation on membrane populated with human dermal fibroblasts. It was shown that the cell spreading, mitochondrial activity and cell population density were higher on membranes coated with fibrin than on nonmodified membranes. The cell performance was improved by adding ascorbic acid in the cell culture medium. At the same time, fibrin stimulated the expression and synthesis of collagen I in human dermal fibroblasts. The expression of beta-integrins was improved by fibrin. And it is shown that the combination of nanofibrous membranes with a fibrin nanocoating and ascorbic acids is beneficial to tissue engineering.
Source
https://www.dovepress.com/articles.php?article_id=25743#