Feeds:
Posts
Comments

Posts Tagged ‘Personalized medicine’


Novel Mechanisms of Resistance to Novel Agents

 

Curators: Larry H. Berstein, M.D. FACP & Stephen J. Williams, Ph.D.

For most of the history of chemotherapy drug development, predicting the possible mechanisms of drug resistance that ensued could be surmised from the drug’s pharmacologic mechanism of action. In other words, a tumor would develop resistance merely by altering the pathways/systems which the drug relied on for mechanism of action. For example, as elucidated in later chapters in this book, most cytotoxic chemotherapies like cisplatin and cyclophosphamide were developed to bind DNA and disrupt the cycling cell, thereby resulting in cell cycle arrest and eventually cell death or resulting in such a degree of genotoxicity which would result in great amount of DNA fragmentation. These DNA-damaging agents efficacy was shown to be reliant on their ability to form DNA adducts and lesions. Therefore increasing DNA repair could result in a tumor cell becoming resistant to these drugs. In addition, if drug concentration was merely decreased in these cells, by an enhanced drug efflux as seen with the ABC transporters, then there would be less drug available for these DNA adducts to be generated. A plethora of literature has been generated on this particular topic.

However in the era of chemotherapies developed against targets only expressed in tumor cells (such as Gleevec against the Bcr-Abl fusion protein in chronic myeloid leukemia), this paradigm had changed as clinical cases of resistance had rapidly developed soon after the advent of these compounds and new paradigms of resistance mechanisms were discovered.

speed of imitinib resistance

Imatinib resistance can be seen quickly after initiation of therapy

mellobcrablresistamplification

Speed of imatinib resistance a result of rapid gene amplification of BCR/ABL target, thereby decreasing imatinib efficacy

 

 

 

 

 

 

 

 

 

 

Although there are many other new mechanisms of resistance to personalized medicine agents (which are discussed later in the chapter) this post is a curation of cellular changes which are not commonly discussed in reviews of chemoresistance and separated in three main categories:

Cellular Diversity and Adaptation

Identifying Cancers and Resistance

Cancer Drug-Resistance Mechanism

p53 tumor drug resistance gene target

Variability of Gene Expression and Drug Resistance

 

Expression of microRNAs and alterations in RNA resulting in chemo-resistance

Drug-resistance Mechanism in Tumor Cells

Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway

 

The miRNA–drug resistance connection: a new era of personalized medicine using noncoding RNA begins

 

Gene Duplication of Therapeutic Target

 

The advent of Gleevec (imatinib) had issued in a new era of chemotherapy, a personalized medicine approach by determining the and a lifesaver to chronic myeloid leukemia (CML) patients whose tumors displayed expression of the Bcr-Abl fusion gene. However it was not long before clinical resistance was seen to this therapy and, it was shown amplification of the drug target can lead to tumor outgrowth despite adequate drug exposure. le Coutre, Weisberg and Mahon23, 24, 25 all independently generated imatinib-resistant clones through serial passage of the cells in imatinib-containing media and demonstrated elevated Abl kinase activity due to a genetic amplification of the Bcr–Abl sequence. However, all of these samples were derived in vitro and may not represent a true mode of clinical resistance. Nevertheless, Gorre et al.26 obtained specimens, directly patients demonstrating imatinib resistance, and using fluorescence in situ hybridization analysis, genetic duplication of the Bcr–Abl gene was identified as one possible source of the resistance. Additional sporadic examples of amplification of the Bcr–Abl sequence have been clinically described, but the majority of patients presenting with either primary or secondary imatinib resistance fail to clinically demonstrate Abl amplification as a primary mode of treatment failure.

This is seen in the following papers:

Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Science. 2001 Aug 3;293(5531):876-80. Epub 2001 Jun 21.

and in another original paper by le Coutre et. al.

Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. le Coutre P1, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G, Marchesi E, Supino R, Gambacorti-Passerini C. Blood. 2000 Mar 1;95(5):1758-66

The 2-phenylaminopyrimidine derivative STI571 has been shown to selectively inhibit the tyrosine kinase domain of the oncogenic bcr/abl fusion protein. The activity of this inhibitor has been demonstrated so far both in vitro with bcr/abl expressing cells derived from leukemic patients, and in vivo on nude mice inoculated with bcr/abl positive cells. Yet, no information is available on whether leukemic cells can develop resistance to bcr/abl inhibition. The human bcr/abl expressing cell line LAMA84 was cultured with increasing concentrations of STI571. After approximately 6 months of culture, a new cell line was obtained and named LAMA84R. This newly selected cell line showed an IC50 for the STI571 (1.0 microM) 10-fold higher than the IC50 (0.1 microM) of the parental sensitive cell line. Treatment with STI571 was shown to increase both the early and late apoptotic fraction in LAMA84 but not in LAMA84R. The induction of apoptosis in LAMA84 was associated with the activation of caspase 3-like activity, which did not develop in the resistant LAMA84R cell line. LAMA84R cells showed increased levels of bcr/abl protein and mRNA when compared to LAMA84 cells. FISH analysis with BCR- and ABL-specific probes in LAMA84R cells revealed the presence of a marker chromosome containing approximately 13 to 14 copies of the BCR/ABL gene. Thus, overexpression of the Bcr/Abl protein mediated through gene amplification is associated with and probably determines resistance of human leukemic cells to STI571 in vitro. (Blood. 2000;95:1758-1766)

This is actually the opposite case with other personalized therapies like the EGFR inhibitor gefinitib where actually the AMPLIFICATION of the therapeutic target EGFR is correlated with better response to drug in

Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs.Ono M, Kuwano M. Clin Cancer Res. 2006 Dec 15;12(24):7242-51. Review.

Abstract

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, including EGFR, HER2/erbB2, and HER3/erbB3, is an attractive target for antitumor strategies. Aberrant EGFR signaling is correlated with progression of various malignancies, and somatic tyrosine kinase domain mutations in the EGFR gene have been discovered in patients with non-small cell lung cancer responding to EGFR-targeting small molecular agents, such as gefitinib and erlotinib. EGFR overexpression is thought to be the principal mechanism of activation in various malignant tumors. Moreover, an increased EGFR copy number is associated with improved survival in non-small cell lung cancer patients, suggesting that increased expression of mutant and/or wild-type EGFR molecules could be molecular determinants of responses to gefitinib. However, as EGFR mutations and/or gene gains are not observed in all patients who respond partially to treatment, alternative mechanisms might confer sensitivity to EGFR-targeting agents. Preclinical studies showed that sensitivity to EGFR tyrosine kinase inhibitors depends on how closely cell survival and growth signalings are coupled with EGFR, and also with HER2 and HER3, in each cancer. This review also describes a possible association between EGFR phosphorylation and drug sensitivity in cancer cells, as well as discussing the antiangiogenic effect of gefitinib in association with EGFR activation and phosphatidylinositol 3-kinase/Akt activation in vascular endothelial cells.

 

Mutant Variants of Therapeutic Target

 

resistant subclones in tissue samples and Tyrosine Kinase tumor activity

 

Mitochondrial Isocitrate Dehydrogenase and Variants

Mutational Landscape of Rare Childhood Brain Cancer: Analysis of 60 Intercranial Germ Cell Tumor Cases using NGS, SNP and Expression Array Analysis – Signaling Pathways KIT/RAS are affected by mutations in IGCTs

 

AND seen with the ALK inhibitors as well (as seen in the following papers

Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib.

Hashida S, Yamamoto H, Shien K, Miyoshi Y, Ohtsuka T, Suzawa K, Watanabe M, Maki Y, Soh J, Asano H, Tsukuda K, Miyoshi S, Toyooka S. Cancer Sci. 2015 Oct;106(10):1377-84. doi: 10.1111/cas.12749. Epub 2015 Sep 30.

In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

Nanjo S, Nakagawa T, Takeuchi S, Kita K, Fukuda K, Nakada M, Uehara H, Nishihara H, Hara E, Uramoto H, Tanaka F, Yano S. Cancer Sci. 2015 Mar;106(3):244-52. doi: 10.1111/cas.12600. Epub 2015 Feb 17.

Identification of a novel HIP1-ALK fusion variant in Non-Small-Cell Lung Cancer (NSCLC) and discovery of ALK I1171 (I1171N/S) mutations in two ALK-rearranged NSCLC patients with resistance to Alectinib. Ou SH, Klempner SJ, Greenbowe JR, Azada M, Schrock AB, Ali SM, Ross JS, Stephens PJ, Miller VA.J Thorac Oncol. 2014 Dec;9(12):1821-5

Reports of chemoresistance due to variants have also been seen with the BRAF inhibitors like vemurafenib and dabrafenib:

The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF.

Watson IR, Li L, Cabeceiras PK, Mahdavi M, Gutschner T, Genovese G, Wang G, Fang Z, Tepper JM, Stemke-Hale K, Tsai KY, Davies MA, Mills GB, Chin L.Cancer Res. 2014 Sep 1;74(17):4845-52. doi: 10.1158/0008-5472.CAN-14-1232-T. Epub 2014 Jul 23

 

 

Read Full Post »


 

Multiple factors related to initial trial design may predict low patient accrual for cancer clinical trials

Reporter: Stephen J. Williams, Ph.D.

UPDATED 5/15/2019

A recently published paper in JCNI highlights results determining factors which may affect cancer trial patient accrual and the development of a predictive model of accrual issues based on those factors.

To hear a JCNI podcast on the paper click here

but below is a good posting from scienmag.com which describes their findings:

Factors predicting low patient accrual in cancer clinical trials

source: http://scienmag.com/factors-predicting-low-patient-accrual-in-cancer-clinical-trials/

Nearly one in four publicly sponsored cancer clinical trials fail to enroll enough participants to draw valid conclusions about treatments or techniques. Such trials represent a waste of scarce human and economic resources and contribute little to medical knowledge. Although many studies have investigated the perceived barriers to accrual from the patient or provider perspective, very few have taken a trial-level view and asked why certain trials are able to accrue patients faster than expected while others fail to attract even a fraction of the intended number of participants. According to a study published December 29 in the JNCI: Journal of the National Cancer Institute, a number of measurable trial characteristics are predictive of low patient accrual.

Caroline S. Bennette, M.P.H., Ph.D., of the Pharmaceutical Outcomes Research and Policy Program, University of Washington, Seattle, and colleagues from the University of Washington and the Fred Hutchinson Cancer Research Center analyzed information on 787 phase II/III clinical trials sponsored by the National Clinical Trials Network (NCTN; formerly the Cooperative Group Program) launched between 2000 and 2011. After excluding trials that closed because of toxicity or interim results, Bennette et al. found that 145 (18%) of NCTN trials closed with low accrual or were accruing at less than 50% of target accrual 3 years or more after opening.

The authors identified potential risk factors from the literature and interviews with clinical trial experts and found multiple trial-level factors that were associated with poor accrual to NCTN trials, such as increased competition for patients from currently ongoing trials, planning to enroll a higher proportion of the available patient population, and not evaluating a new investigational agent or targeted therapy. Bennette et al. then developed a multivariable prediction model of low accrual using 12 trial-level risk factors, which they reported had good agreement between predicted and observed risks of low accrual in a preliminary validation using 46 trials opened between 2012 and 2013.

The researchers conclude that “Systematically considering the overall influence of these factors could aid in the design and prioritization of future clinical trials…” and that this research provides a response to the recent directive from the Institute of Medicine to “improve selection, support, and completion of publicly funded cancer clinical trials.”

In an accompanying editorial, Derek Raghavan, M.D., Levine Cancer Institute, writes that the focus needs to be on getting more patients involved in trials, saying, “we should strive to improve trial enrollment, giving the associated potential for improved results. Whether the basis is incidental, because of case selection bias, or reflects the support available to trial patients has not been determined, but the fact remains that outcomes are better.”

###

Contact info:

Article: Caroline S. Bennette, M.P.H., Ph.D., cb11@u.washington.edu

Editorial: Derek Raghavan, M.D., derek.raghavan@carolinashealthcare.org

Other investigators also feel that initial trial design is of UTMOST importance for other reasons, especially in the era of “precision” or “personalized” medicine and why the “basket trial” or one size fits all trial strategy is not always feasible.

In Why the Cancer Research Paradigm Must Transition to “N-of-1” Approach

Dr. Maurie Markman, MD gives insight into why the inital setup of a trial and the multi-center basket type of  accrual can be a problematic factor in obtaining meaningful cohorts of patients with the correct mutational spectrum.

The anticancer clinical research paradigm has rapidly evolved so that subject selection is increasingly based on the presence or absence of a particular molecular biomarker in the individual patient’s malignancy. Even where eligibility does not mandate the presence of specific biological features, tumor samples are commonly collected and an attempt is subsequently made to relate a particular outcome (eg, complete or partial objective response rate; progression-free or overall survival) to the individual cancer’s molecular characteristics.

One important result of this effort has been the recognition that there are an increasing number of patient subsets within what was previously—and incorrectly—considered a much larger homogenous patient population; for example, non–small cell lung cancer (NSCLC) versus EGFR-mutation–positive NSCLC. And, while it may still be possible to conduct phase III randomized trials involving a relatively limited percentage of patients within a large malignant entity, extensive and quite expensive effort may be required to complete this task. For example, the industry-sponsored phase III trial comparing first-line crizotinib with chemotherapy (pemetrexed plus either carboplatin or cisplatin) in ALK-rearrangement–positive NSCLC, which constitutes 3% to 5% of NSCLCs, required an international multicenter effort lasting 2.5 years to accrue the required number of research subjects.1

But what if an investigator, research team, or biotech company desired to examine the clinical utility of an antineoplastic in a patient population representing an even smaller proportion of patients with NSCLC such as in the 1% of the patient population with ROS1 abnormalities,2 or in a larger percentage of patients representing 4%-6% of patients with a less common tumor type such as ovarian cancer? How realistic is it that such a randomized trial could ever be conducted?

Further, considering the resources required to initiate and successfully conduct a multicenter international phase III registration study, it is more than likely that in the near future only the largest pharmaceutical companies will be in a position to definitively test the clinical utility of an antineoplastic in a given clinical situation.

One proposal to begin to explore the benefits of targeted antineoplastics in the setting of specific molecular abnormalities has been to develop a socalled “basket trial” where patients with different types of cancers with varying treatment histories may be permitted entry, assuming a well-defined molecular target is present within their cancer. Of interest, several pharmaceutical companies have initiated such clinical research efforts.

Yet although basket trials represent an important research advance, they may not provide the answer to the molecular complexities of cancer that many investigators believe they will. The research establishment will have to take another step toward innovation to “N-of-1” designs that truly explore the unique nature of each individual’s cancer.

Trial Illustrates Weaknesses

A recent report of the results of one multicenter basket trial focused on thoracic cancers demonstrates both the strengths but also a major fundamental weakness of the basket trial approach.3

However, the investigators were forced to conclude that despite accrual of more than 600 patients onto a study conducted at two centers over a period of approximately 2 years, “this basket trial design was not feasible for many of the arms with rare mutations.”3

They concluded that they needed a larger number of participating institutions and the ability to adapt the design for different drugs and mutations. So the question to be asked is as follows: Is the basket-type approach the only alternative to evaluate the clinical relevance of a targeted antineoplastic in the presence of a specific molecular abnormality?

Of course, the correct answer to this question is surely: No!

– See more at: http://www.onclive.com/publications/Oncology-live/2015/July-2015/Why-the-Cancer-Research-Paradigm-Must-Transition-to-N-of-1-Approach#sthash.kLGwNzi3.dpuf

The following is a video on the website ClinicalTrials.gov which is a one-stop service called EveryClinicalTrial to easily register new clinical trials and streamline the process:

 

UPDATED 5/15/2019

Another possible roadblock to patient accrual has always been the fragmentation of information concerning the availability of clinical trails and coordinating access among the various trial centers, as well as performing analytics on trial data to direct new therapeutic directions.  The NIH has attempted to circumvent this problem with the cancer trials webpage trials.gov however going through the vast number of trials, patient accrual requirements, and finding contact information is a daunting task.  However certain clinical trial marketplaces are now being developed which may ease access problems to clinical trials as well as data analytic issues, as highlighted by the Scientist.com article below:

Scientist.com Launches Trial Insights, A Transformative Clinical Trials Data Analytics Solution

The world’s largest online marketplace rolls out first original service, empowering researchers with on demand insights into clinical trials to help drive therapeutic decisions

SAN DIEGO–(BUSINESS WIRE)–Scientist.com, the online marketplace for outsourced research, announced today the launch of Trial Insights, a digital reporting solution that simplifies data produced through clinical trial, biomarker and medical diagnostic studies into an intuitive and user-friendly dashboard. The first of its kind, Trial Insights curates publicly available data nightly from information hubs such as clinicaltrials.gov and customizes it to fit a researcher or research organization’s specific project needs.

Trial Insights, new clinical trial reporting solution, allows researchers to keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.

Tweet this

“Trial Insights offers researchers an easy way to navigate the complexity of clinical trials information,” said Ron Ranauro, Founder of Incite Advisors. “Since Trial Insights’ content is digitally curated, researchers can continuously keep track of the evolving landscape of drugs, diseases, sponsors, investigators and medical devices important to their work.”

As the velocity, variety and veracity of data available on sites like clinicaltrials.gov continues to increase, the ability to curate it becomes more valuable to different audiences. With the advancement of personalized medicine, it is important to make the data accessible to the health care and patient communities. Information found on the Trial Insights platform can help guide decision making across the pharmaceutical, biotechnology and contract research organization industries as clinical trial data is a primary information source for competitive intelligence, research planning and clinical study planning.

“We are extremely excited to launch the first Scientist.com exclusive, original service offering to our clients in the life sciences,” said Mark Herbert, Scientist.com Chief Business Officer. “Our goal at Scientist.com is to help cure all diseases by 2050, and we believe solutions like Trial Insights, which greatly simplifies access to and reporting of clinical trial data, will get us one step closer to reaching that goal.”

source: https://www.businesswire.com/news/home/20190416005362/en/Scientist.com-Launches-Trial-Insights-Transformative-Clinical-Trials?utm_source=TrialIO+List

 

Other article on this Open Access Journal on Cancer Clinical Trial Design include:

Read Full Post »

Biomarker Development


Biomarker Development, Volume 2 (Volume Two: Latest in Genomics Methodologies for Therapeutics: Gene Editing, NGS and BioInformatics, Simulations and the Genome Ontology), Part 1: Next Generation Sequencing (NGS)

Biomarker Development

Curator: Larry H. Bernstein, MD, FCAP

 

 

NBDA’s Biomarker R&D Modules

http://nbdabiomarkers.org/

“collaboratively creating the NBDA Standards* required for end-to-end, evidence – based biomarker development to advance precision (personalized) medicine”

http://nbdabiomarkers.org/sites/all/themes/nbda/images/nbda_logo.jpg

http://nbdabiomarkers.org/about/what-we-do/pipeline-overview/assay-development

 

Successful biomarkers should move systematically and seamlessly through specific R&D “modules” – from early discovery to clinical validation. NBDA’s end-to-end systems approach is based on working with experts from all affected multi-sector stakeholder communities to build an in-depth understanding of the existing barriers in each of these “modules” to support decision making at each juncture.  Following extensive “due diligence” the NBDA works with all stakeholders to assemble and/or create the enabling standards (guidelines, best practices, SOPs) needed to support clinically relevant and robust biomarker development.

Mission: Collaboratively creating the NBDA Standards* required for end-to-end, evidence – based biomarker development to advance precision (personalized) medicine.
NBDA Standards include but are not limited to: “official existing standards”, guidelines, principles, standard operating procedures (SOP), and best practices.

https://vimeo.com/83266065

 

“The NBDA’s vision is not to just relegate the current biomarker development processes to history, but also to serve as a working example of what convergence of purpose, scientific knowledge and collaboration can accomplish.”

NBDA Workshop VII – “COLLABORATIVELY BUILDING A FOUNDATION FOR FDA BIOMARKER QUALIFICATION”
NBDA Workshop VII   December 14-15, 2015   Washington Court Hotel, Washington, DC

The upcoming meeting was preceded by an NBDA workshop held on December 1-2, 2014, “The Promising but Elusive Surrogate Endpoint:  What Will It Take?” where we explored in-depth with FDA leadership and experts in the field the current status and future vison for achieving success in surrogate endpoint development.  Through panels and workgroups, the attendees extended their efforts to pursue the FDA’s biomarker qualification pathway through the creation of sequential contexts of use models to support qualification of drug development tools – and ultimately surrogate endpoints.

Although the biomarker (drug development tools) qualification pathway (http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentTools…) represents an opportunity to increase the value of predictive biomarkers, animal models, and clinical outcomes across the drug (and biologics) development continuum, there are myriad challenges.  In that regard, the lack of evidentiary standards to support contexts of use-specific biomarkers emerged from the prior NBDA workshop as the major barrier to achieving the promise of biomarker qualification.  It also became clear that overall, the communities do not understand the biomarker qualification process; nor do they fully appreciate that it is up to the stakeholders in the field (academia, non-profit foundations, pharmaceutical and biotechnology companies, and patient advocate organizations) to develop these evidentiary standards.

This NBDA workshop will feature a unique approach to address these problems.  Over the past two years, the NBDA has worked with experts in selected disease areas to develop specific case studies that feature a systematic approach to identifying the evidentiary standards needed for sequential contexts of use for specific biomarkers to drive biomarker qualification.   These constructs, and accompanying whitepapers are now the focus of collaborative discussions with FDA experts.

The upcoming meeting will feature in-depth panel discussions of 3-4 of these cases, including the case leader, additional technical contributors, and a number of FDA experts.  Each of the panels will analyze their respective case for strengths and weaknesses – including suggestions for making the biomarker qualification path for the specific biomarker more transparent and efficient. In addition, the discussions will highlight the problem of poor reproducibility of biomarker discovery results, and its impact on the qualification process.

 

Health Care in the Digital Age

Mobile, big data, the Internet of Things and social media are leading a revolution that is transforming opportunities in health care and research. Extraordinary advancements in mobile technology and connectivity have provided the foundation needed to dramatically change the way health care is practiced today and research is done tomorrow. While we are still in the early innings of using mobile technology in the delivery of health care, evidence supporting its potential to impact the delivery of better health care, lower costs and improve patient outcomes is apparent. Mobile technology for health care, or mHealth, can empower doctors to more effectively engage their patients and provide secure information on demand, anytime and anywhere. Patients demand safety, speed and security from their providers. What are the technologies that are allowing this transformation to take place?

 

https://youtu.be/WeXEa2cL3oA    Monday, April 27, 2015  Milken Institute

Moderator


Michael Milken, Chairman, Milken Institute

 

Speakers


Anna Barker, Fellow, FasterCures, a Center of the Milken Institute; Professor and Director, Transformative Healthcare Networks, and Co-Director, Complex Adaptive Systems Network, Arizona State University
Atul Butte, Director, Institute of Computational Health Sciences, University of California, San Francisco
John Chen, Executive Chairman and CEO, BlackBerry
Victor Dzau, President, Institute of Medicine, National Academy of Sciences; Chancellor Emeritus, Duke University
Patrick Soon-Shiong, Chairman and CEO, NantWorks, LLC

 

Mobile, big data, the Internet of Things and social media are leading a revolution that is transforming opportunities in health care and research. Extraordinary advancements in mobile technology and connectivity have provided the foundation needed to dramatically change the way health care is practiced today and research is done tomorrow. While we are still in the early innings of using mobile technology in the delivery of health care, evidence supporting its potential to impact the delivery of better health care, lower costs and improve patient outcomes is apparent. Mobile technology for health care, or mHealth, can empower doctors to more effectively engage their patients and provide secure information on demand, anytime and anywhere. Patients demand safety, speed and security from their providers. What are the technologies that are allowing this transformation to take place?

Read Full Post »


Medical Breakthrough: Israeli Researcher Predicts Where Cancer Will Spread

Reporter: Evelina Cohn Budu, PhD

 

An innovative technology developed in Israel may soon be able to predict the spread of cancer from one organ to another, potentially saving the lives of millions of people around the world.

The technology, developed at Israel’s Technion – Israel Institute of Technology, has been proven in preliminary laboratory trials, and is now entering into advanced testing using cells from patients undergoing surgery.

Assistant Professor Dr. Daphne Weihs has developed a unique biomechanical method for the early detection of metastatic cancer (a cancer that has already spread). At the metastatic stage, the original, primary tumor expands, invades and takes over more and more nearby tissue. A tumor that has become very aggressive “knows” how to send metastases to more distant tissues through the lymph and circulatory systems.

Metastases (secondary tumors) are usually more dangerous than the primary tumor because it is difficult to identify them at their inception. When they are detected at an advanced stage, treating them medically is more complicated and the medical prognosis is typically not good.

proteinattackscancercell

Photos: Courtesy of the Technion

cancer-cells-

Photos: Courtesy of the Technion

ABOUT THE RESEARCHER

Daphne Weihs , Assistant Professor

Affiliation: Faculty

Link to Lab Web Page:

 

SOURCE

http://nocamels.com/2015/10/israeli-researcher-predicts-spread-cancer/?utm_source=activetrail&utm_medium=email&utm_campaign=nc4/11/15

 

REFERENCES

New Israeli Cancer Vaccine Triggers Response In 90% Of Cancer Types

By Jonathan Neff, NoCamels.com January 01, 2015

http://nocamels.com/2015/01/new-vaccine-for-cancer/

How Elephants’ Genes Are Fighting Cancer In Humans

By Lauren Blanchard, NoCamels October 18, 2015

http://nocamels.com/2015/10/how-elephants-genes-are-helping-fight-cancer-in-humans/

Other related articles published in this Open Access Online Scientific Journal, include the following:

 

https://pharmaceuticalintelligence.com/?s=metastasis

 

Please place here FIVE articles from above link

Read Full Post »


New Guidelines and Meeting Information on Advanced Thyroid Cancer as Reported by Cancer Network (Meeting Highlights)

 

Reporter: Stephen J. Williams, Ph.D.

Cancer Network presents exclusive coverage on thyroid cancer from the 15th International Thyroid Congress (ITC) and 85th Annual Meeting of the American Thyroid Association (ATA), held October 18-23 in Lake Buena Vista, Florida.

Vista, Florida.
Conference Reports
ATA Updates Guidelines for Differentiated Thyroid Cancers
Release of newly revised, evidence-based clinical management guidelines for thyroid nodules and differentiated thyroid cancers were announced at the 85th Annual Meeting of the ATA.
FAM83F Protein Implicated in Papillary Thyroid Cancer and Drug Resistance
The FAM83F protein contributes to papillary thyroid cancer cell viability and doxorubicin resistance, according to a study presented at the 85th Annual Meeting of the ATA.
Autophagy Implicated in Vemurafenib Resistance in BRAF-Mutant Thyroid Cancer
Preclinical findings suggest that autophagy inhibition might prove useful in overcoming BRAF-mutant thyroid cancers resistant to vemurafenib.

 

Summary of Newly Released Guidelines on Management of Thyroid Nodules and Differentiated Thyroid Cancers

See Cancer.gov for more information on thyroid cancer

Release of newly revised, evidence-based clinical management guidelines for thyroid nodules and differentiated thyroid cancers were announced at the 15th International Thyroid Congress (ITC) and 85th Annual Meeting of the American Thyroid Association (ATA) in Lake Buena Vista, Florida, and published in Thyroid.

  • The ATA Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer authored the guidelines. The Taskforce was chaired by Bryan R. Haugen, MD, of the University of Colorado School of Medicine in Aurora, Colorado.

The updated guidelines reflect

  • advances in the interpretation of biopsy and the use of molecular-marker studies in the clinical differentiation of benign thyroid nodules from thyroid cancer,
  • risk assessment,
  • cancer screening,
  • the management of benign thyroid nodules,
  • the diagnosis and the initial and long-term management of differentiated thyroid cancer.
  • Guidelines modified for long-term management of differentiated thyroid cancer
  • additional research and recommendations needed “for clinical trials and targeted therapy.”

The United States saw an estimated 63,000 newly diagnosed cases of thyroid cancer cases in 2014, up sharply from 37,200 in 2009, when the ATA guidelines were last revised.

– See more at: http://www.cancernetwork.com/ata-2015-thyroid-cancer/ata-updates-guidelines-differentiated-thyroid-cancers?GUID=D63BFB74-A7FD-4892-846F-A7D1FFE0F131&XGUID=&rememberme=1&ts=20102015#sthash.yXbBrS2x.dpuf

 

 

 

Vemurafenib

From 2011 FDA press release on approval of vemurafenib:

FDA NEWS RELEASE

For Immediate Release: Aug. 17, 2011
Media Inquiries: Erica Jefferson, 301-796-4988, erica.jefferson@fda.hhs.gov
Consumer Inquiries: 888-INFO-FDA

FDA approves Zelboraf and companion diagnostic test for late-stage skin cancer
Second melanoma drug approved this year that improves overall survival

The U.S. Food and Drug Administration today approved Zelboraf (vemurafenib), a drug to treat patients with late-stage (metastatic) or unresectable (cannot be removed by surgery) melanoma, the most dangerous type of skin cancer.

Zelboraf is specifically indicated for the treatment of patients with melanoma whose tumors express a gene mutation called BRAF V600E. The drug has not been studied in patients whose melanoma tests negative for that mutation by an FDA approved diagnostic.

Zelboraf is being approved with a first-of-a-kind test called the cobas 4800 BRAF V600 Mutation Test, a companion diagnostic that will help determine if a patient’s melanoma cells have the BRAF V600E mutation.

The BRAF protein is normally involved in regulating cell growth, but is mutated in about half of the patients with late-stage melanomas. Zelboraf is a BRAF inhibitor that is able to block the function of the V600E-mutated BRAF protein.

“This has been an important year for patients with late-stage melanoma. Zelboraf is the second new cancer drug approved that demonstrates an improvement in overall survival,” said Richard Pazdur, M.D., director of the Office of Oncology Drug Products in the FDA’s Center for Drug Evaluation and Research. “In March, we approved Yervoy (ipilimumab), another new treatment for late-stage melanoma that also showed patients live longer after receiving the drug.”

Zelboraf was reviewed under the FDA’s priority review program that provides for an expedited six-month review of drugs that may offer major advances in treatment or that provide a treatment when no adequate therapy exists. Zelboraf and the companion BRAF V600E test are being approved ahead of the drug’s Oct. 28, 2011 goal date and the companion diagnostics’ Nov. 12, 2011 goal date.

Zelboraf’s safety and effectiveness were established in a single international trial of 675 patients with late-stage melanoma with the BRAF V600E mutation who had not received prior therapy. Patients were assigned to receive either Zelboraf or dacarbazine, another anti-cancer therapy. The trial was designed to measure overall survival (the length of time between start of treatment and death of a patient).

The median survival (the length of time a patient lives after treatment) of patients receiving Zelboraf has not been reached (77 percent still living) while the median survival for those who received dacarbazine was 8 months (64 percent still living).

“Today’s approval of Zelboraf and the cobas test is a great example of how companion diagnostics can be developed and used to ensure patients are exposed to highly effective, more personalized therapies in a safe manner,” said Alberto Gutierrez, Ph.D., director of the Office of In Vitro Diagnostic Device Evaluation and Safety in the FDA’s Center for Devices and Radiological Health.

The FDA’s approval of the cobas 4800 BRAF V600 Mutation Test was based on data from the clinical study that also evaluated the safety and effectiveness of Zelboraf. Samples of a patient’s melanoma tissue were collected to test for the mutation.

The most common side effects reported in patients receiving Zelboraf included joint pain, rash, hair loss, fatigue, nausea, and skin sensitivity when exposed to the sun. About 26 percent of patients developed a skin-related cancer called cutaneous squamous cell carcinoma, which was managed with surgery. Patients treated with Zelboraf should avoid sun exposure.

Zelboraf is being approved with a Medication Guide to inform health care professionals and patients of Zelboraf’s potential risks.

In July 2011, the FDA issued a new draft guidance to facilitate the development and review of companion diagnostics. The guidance, currently available for public comment, is intended to provide companies with guidance on the agency’s policy for reviewing a companion diagnostic and the corresponding drug therapy.

Melanoma is the leading cause of death from skin disease. The National Cancer Institute estimated that 68,130 new cases of melanoma were diagnosed in the United States during 2010; about 8,700 people died from the disease.

Zelboraf is marketed by South San Francisco based-Genentech, a member of the Roche Group. The cobas 4800 BRAF V600 Mutation Test is manufactured by Roche Molecular Systems in Pleasanton, Calif.

 

More Articles in this Open Access Journal on Thyroid Cancer Include

 

The Experience of a Patient with Thyroid Cancer

Thyroid Cancer: The Evolution of Treatment Options

The Relation between Coagulation and Cancer affects Supportive Treatments

 

Read Full Post »


Early Diagnosis

Reporter: Stephen J. Williams, Ph.D.

This post contains a curation of all Early Diagnosis posts on this site as well as a curation of the Early Detection Research Network.

Early Research Detection Network (EDRN)

Welcome to EDRN

The Early Detection Research Network (EDRN), an initiative of the National Cancer Institute (NCI), brings together dozens of institutions to help accelerate the translation of biomarker information into clinical applications and to evaluate new ways of testing cancer in its earliest stages and for cancer risk.

Getting Started…

Check out the EDRN Highlights — a listing of our accomplishments and milestones.

 

► Scientific Components ► For Public, Patients, Advocates
► Collaborative Opportunities (how to join EDRN) ► For Researchers

Highlights

Highlights of the accomplishments of the Early Detection Research Network.

A brief list of major EDRN-developed assays that have been adapted for clinical use is described in the table below:

Detection/Biomarker Assay Discovery Refine/Adapt for Clin Use Clinical Validation Clinical Translation
Blood proPSA FDA approved
Urine PCA3 FDA approved
OVA1™ for Ovarian Cancer FDA approved
ROMA Algorithm for CA125 and HE4 Tests for Pelvic Mass Malignancies FDA approved
Blood/DCP and AFP-L3 for Hepatocellular Carcinoma FDA approved
Blood GP73 Together with AFP-L3 used  for monitoring cirrhotic patients for HCC in China
MiPS (Mi Prostate Score Urine test), Multiplex analysis of T2-ERG gene fusion, PCA3 and serum PSA In CLIA Lab
FISH to detect T2S:Erg fusion for Prostate Cancer In CLIA Lab
GSTP1 methylation for repeat biopsies in prostate cancer In CLIA Lab
Mitochondrial deletion for detection of prostate cancer In CLIA Lab
Somalogic 12-marker panel for Lung Cancer In CLIA Lab
80-gene panel for Lung Cancer In CLIA Lab
Vimentin Methylation Marker for Colon Cancer In CLIA Lab
Galectin-3 ligand for detection of adenomas and colon cancer In CLIA Lab
8-gene panel for Barrett’s Esophagus In CLIA Lab
SOPs for Blood (Serum, Plasma), Urine, Stool Frequently used by biomarker research community
EDRN Pre/Validation Specimen Reference Sets (specimens from well characterized and matched cases and controls from specific disease spectra) Frequently used by biomarker research community

Since its inception in 1999 EDRN has achieved several key milestones, summarized below:

1998 through 2000: Inception and Inauguration of EDRN

2001 to 2003: Meeting the Challenges to Harness and Share Emerging Scientific Knowledge

  • EDRN Second Report, Translational Research to Identify Early Cancer and Cancer Risk, October 2002, http://edrn.nci.nih.gov/docs.) published.
  • EDRN joined the Gordon Research Conferences to co-host the New Frontiers in Cancer detection and Diagnosis in 2002.

 

  • Guidelines Set for Studies Measuring Biomarker Predictive Power Journal of National Cancer Institute (Vol. 93, No. 14, July 18, 2001).
  • EDRN Associate Membership Program Initiated: This novel approach to make EDRN inclusive has been extremely successful. EDRN has now more than 120 Associate Members who are significantly contributing to EDRN efforts in biomarker discovery, development and validation.

2003 to 2004: Network Surges Ahead in Real-time

  • Collaborative Discovery and Validation Projects:  More than 100 collaborative projects spanned the various organ sites. These projects are monitored through the EDRN’s electronic System Information System (eSIS).
  • EDRN Virtual Specimen Bank and Validation Management System Launched: The EDRN Virtual Specimen Bank, also known as ERNE knowledge system, was deployed to 10 institutions in early 2003, allowing a common web-based query to search for available specimens across the EDRN Clinical Epidemiology and Validation Centers https://ginger.fhcrc.org/edrn/imp/GateServlet?pwd. VSIMS was created to allow multiple studies to be administered efficiently by minimizing development time with standardization of information and data management across multiple activities and research sites. This system encompasses all the security features of Food and Drug Administration (FDA)-required auditing systems.
  • Partnership on the Plasma Proteome Project (PPP) Initiative of the Human Proteome Organization (HUPO): PPP project was initiated to evaluate multiple technology platforms, develop bioinformatic tools and standards for protein identification, and create a database of the plasma proteome. The entire study was published in the August issue of the journal Proteomics August 2005, Volume 4 (4), pp 1045-1450.

2005 to 2008: An Investment in Prevention

  • In late 2006, EDRN’s Program for Rapid, Independent Diagnostic Evaluation (PRIDE), was established (http://grants.nih.gov/grants/guide/notice-files/NOT-CA-07-003.html ) as an administrative means to assist extramural investigators in successfully conducting cross-laboratory validation of biomarkers. Ten applications have been reviewed and five are being supported.
  • EDRN underwent external reviews in 2007 and 2008.
  • The Canary Foundation, Palo Alto, CA signed a Memorandum of Understanding with EDRN, NCI on supporting prostate cancer surveillance network of investigators from seven institutions. The tissue and serum will be collected during a three-year period and will be made available to extramural scientists for discovery and validation research.
  • The Lustgarten Foundation, N.Y., funded 6 institutions to generate monoclonal antibodies and associated hybridoma cell lines for pancreatic cancer antigens (biomarkers) identified by EDRN and non-EDRN investigators. These resources will be stored at the NCI-Frederick Facility for distribution to extramural investigators.

2009 to 2011: Realizing Investment for Clinical Use

  • Two biomarker tests approved by FDA and two IVDs pending FDA review.
  • Six biomarker tests offered by CLIA labs.
  • One biomarker test approved for clinical use outside the USA

A Curation of Posts on Early Detection of Cancer and Other Early Detection Networks is Included Below

 

BRCA 1 and 2 and Early Detection of Cancer

Early Detection of Prostate Cancer: American Urological Association (AUA) Guideline

Mechanism involved in Breast Cancer Cell Growth: Function in Early Detection & Treatment

Warning signs may lead to better early detection of ovarian cancer

Cancer Detection

Biomarker tool development for Early Diagnosis of Pancreatic Cancer: Van Andel Institute and Emory University

China, India, and Russia account for 46% of all new cancer cases globally, as well as 52% of cancer-related mortality per 4/2014 Lancet Oncology article

 

Read Full Post »


Can IntraTumoral Heterogeneity Be Thought of as a Mechanism of Resistance?

Curator/Reporter: Stephen J. Williams, Ph.D.

Therapeutic resistance remains one of the most challenging problems for the oncologist, despite the increase of new therapeutics in the oncologist’s toolkit. As new targeted therapies are developed, and new novel targets are investigated as potential therapies, especially cytostatic therapies which it has become evident our understanding of chemoresistance is expanding beyond mechanisms to circumvent a drug’s pharmacologic mechanism of action (i.e. increased DNA repair and cisplatin) or pharmacokinetic changes (i.e. increased efflux by acquisition of a MDR phenotype).

In a talk at the 2015 AACR National Meeting, Dr. Charles Swanton discusses the development of tumor heterogeneity in the light of developing, or acquired, drug resistance. Chemoresistance is either categorized as acquired resistance (where resistance develops upon continued exposure to drug) or inherent resistance (related to a tumor being refractory or unresponsive to drug). Dr Swanton discusses findings where development of this heterogeneity (discussed here in a posting on Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing) and here (Notes On Tumor Heterogeneity: Targets and Mechanisms, from the 2015 AACR Meeting in Philadelphia PA) on recent findings on Branched Chain Heterogeneity) is resulting in clones resistant to the initial drug treatment.

To recount a bit of background I list the overall points of the one of previous posts on tumor heterogeneity (and an interview with Dr. Charles Swanton) are as follows:

Multiple biopsies of primary tumor and metastases are required to determine the full mutational landscape of a patient’s tumor

The intratumor heterogeneity will have an impact on the personalized therapy strategy for the clinician

Metastases arising from primary tumor clones will have a greater genomic instability and mutational spectrum than the tumor from which it originates

Tumors and their metastases do NOT evolve in a linear path but have a branched evolution and would complicate biomarker development and the prognostic and resistance outlook for the patient

 

The following is a curation of various talks and abstracts from the 2015 AACR National Meeting in Philadelphia on effects of clonal evolution and intratumoral heterogeneity of a tumor with respect to development of chemoresistance. As this theory of heterogeneity and clonal evolution is particularly new I attempted to present all works (although apologize for the length upfront) to forgo bias and so the reader may extract any information pertinent to their clinical efforts and research. However I will give a brief highlight summary below:

 

From the 2015 AACR National Meeting in Philadelphia

 

 

 

 

PresentationNumber:NGO2

Presentation Title: Polyclonal and heterogeneous resistance to targeted therapy in leukemia
Presentation Time: Monday, Apr 20, 2015, 10:40 AM -10:55 AM
Location: Room 201, Pennsylvania Convention Center
Author Block: Catherine C. Smith, Amy Paguirigan, Chen-Shan Chin, Michael Brown, Wendy Parker, Mark J. Levis, Alexander E. Perl, Kevin Travers, Corynn Kasap, Jerald P. Radich, Susan Branford, Neil P. Shah. University of California, San Francisco, CA, Fred Hutchinson Cancer Research Center, Seattle, WA, Pacific Biosciences, Menlo Park, CA, Royal Adelaide Hospital, Adelaide, Australia, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, University of California, San Francisco, CA
Abstract Body: Genomic studies in solid tumors have revealed significant branching intratumoral clonal genetic heterogeneity. Such complexity is not surprising in solid tumors, where sequencing studies have revealed thousands of mutations per tumor genome. However, in leukemia, the genetic landscape is considerably less complex. Chronic myeloid leukemia (CML) is the human malignancy most definitively linked to a single genetic lesion, the BCR-ABL gene fusion. Genome wide sequencing of acute myeloid leukemia (AML) has revealed that AML is the most genetically straightforward of all extensively sequenced adult cancers to date, with an average of 13 coding mutations and 3 or less clones identified per tumor.
In CML, tyrosine kinase inhibitors (TKIs) of BCR-ABL have resulted in high rates of remission. However, despite excellent initial response rates with TKI monotherapy, patients still relapse, including virtually all patients with Philadelphia-positive acute lymphoblastic leukemia and blast crisis CML. Studies of clinical resistance highlight BCR-ABL as the sole genetic driver in CML as secondary kinase domain (KD) mutations that prevent drug binding are the predominant mechanism of relapse on BCR-ABL TKIs.
In AML, a more diverse panel of disease-defining genetic mutations has been uncovered. However, in individual patients, a single oncogene can still drive disease. This is the case in FLT3 mutant AML, in which the investigational FLT3 TKI quizartinib achieved an initial response rate of ~50% in relapsed/refractory AML patients with activating FLT3 internal tandem duplication (ITD) mutations, though most patients eventually relapsed. Confirming the importance of FLT3 in disease maintenance, we showed that 8 of 8 patients who relapsed on quizartinib did so due to acquired drug-resistant FLT3 KD mutations.
Studies in CML have revealed that sequential TKI therapy is associated with additional complexity where multiple mutations can coexist separately in an individual patient (“polyclonality”) or in tandem on a single allele (“compound mutations”). In AML, we observed polyclonal FLT3-ITD KD mutations in 2 of 8 patients examined in our initial study of quizartinib resistance.
In light of the polyclonal KD mutations observed in CML and AML at the time of TKI relapse, we undertook next generation sequencing studies to determine the true genetic complexity in CML and AML patients at the time of relapse on targeted therapy. We used Pacific Biosciences RS Single Molecule Real Time (SMRT) third generation sequencing technology to sequence the entire ABL KD or the entire FLT3 juxtamembrane and KD on a single strand of DNA. Using this method, we assessed a total of 103 samples from 79 CML patients on ABL TKI therapy and 36 paired pre-treatment and relapse samples from 18 FLT3-ITD+ AML patients who responded to investigational FLT3 TKI therapy.
In CML, using SMRT sequencing, we detected all mutations previously detected by direct sequencing. Of samples in which multiple mutations were detectable by direct sequencing, 85% had compound mutant alleles detectable in a variety of combinations. Compound mutant alleles were comprised of both dominant and minor mutations, some which were not detectable by direct sequencing. In the most complex case, 12 individual mutant alleles comprised of 7 different mutations were identified in a single sample.
For 12 CML patients, we interrogated longitudinal samples (2-4 time points per patient) and observed complex clonal relationships with highly dynamic shifts in mutant allele populations over time. We detected compound mutations arising from ancestral single mutant clones as well as parallel evolution of de novo polyclonal and compound mutations largely in keeping with what would be expected to cause resistance to the second generation TKI therapy received by that patient.
We used a phospho-flow cytometric technique to assesses the phosphorylation status of the BCR-ABL substrate CRKL in as a method to test the ex vivo biochemical responsiveness of individual mutant cell populations to TKI therapy and assess functional cellular heterogeneity in a given patient at a given timepoint. Using this technique, we observed co-existing cell populations with differential ex vivo response to TKI in 2 cases with detectable polyclonal mutations. In a third case, we identified co-existence of an MLL-AF9 containing cell population that retained the ability to modulate p-CRKL in response to BCR-ABL TKIs along with a BCR-ABL containing only population that showed biochemical resistance to all TKIs, suggesting the co-existence of BCR-ABL independent and dependent resistance in a single patient.
In AML, using SMRT sequencing, we identified acquired quizartinib resistant KD mutations on the FLT3-ITD (ITD+) allele of 9 of 9 patients who relapsed after response to quizartinib and 4 of 9 patients who relapsed after response to the investigational FLT3 inhibitor, PLX3397. In 4 cases of quizartinib resistance and 3 cases of PLX3397 resistance, polyclonal mutations were observed, including 7 different KD mutations in one patient with PLX3397 resistance. In 7 quizartinib-resistant cases and 3 PLX3397-resistant cases, mutations occurred at the activation loop residue D835. When we examined non-ITD containing (ITD-) alleles, we surprisingly uncovered concurrent drug-resistant FLT3 KD mutations on ITD- alleles in 7 patients who developed quizartinib resistance and 4 patients with PLX3397 resistance. One additional PLX3397-resistant patient developed a D835Y mutation only in ITD- alleles at the time of resistance, suggesting selection for a non-ITD containing clone. All of the individual substitutions found on ITD- alleles were the same substitutions identified on ITD+ alleles for each individual patient.
Given that the same individual mutations found on ITD- alleles were also found on ITD+ alleles, we sought to determine whether these mutations were found in the same cell or were indicative of polyclonal blast populations in each patient. To answer this question, we performed single cell sorting of viably frozen blasts from 3 quizartinib-resistant patients with D835 mutations identified at the time of relapse and genotyped single cells for the presence or absence of ITD and D835 mutations. This analysis revealed striking genetic heterogeneity. In 2/3 cases, polyclonal D835 mutations were found in both ITD+ and ITD- cells. In all cases, FLT3-ITD and D835 mutations were found in both heterozygous and homozygous combinations. Most surprisingly, in all 3 patients, approximately 30-40% of FLT3-ITD+ cells had no identified quizartinib resistance-causing FLT3 KD mutation to account for resistance, suggesting the presence of non-FLT3 dependent resistance in all patients.
To determine that ITD+ cells lacking FLT3 KD mutations observed in patients relapsed on quizartinib are indeed consistent with leukemic blasts functionally resistant to quizartinib and do not instead represent a population of differentiated or non-proliferating cells, we utilized relapse blasts from another patient who initially achieved clearance of bone marrow blasts on quizartinib and developed a D835Y mutation at relapse. We performed a colony assay in the presence of 20nM quizartinib. As expected, this dose of quizartinib was unable to suppress the colony-forming ability of blasts from this relapsed patient when compared to DMSO treatment. Genotyping of individual colonies grown from this relapse sample in the presence of 20nM quizartinib again showed remarkable genetic heterogeneity, including ITD+ and ITD- colonies with D835Y mutations in homozygous and heterozygous combinations as well as ITD+ colonies without D835Y mutations, again suggesting the presence of blasts with non-FLT3 dependent resistance. Additionally, 4 colonies with no FLT3 mutations at all were identified in this sample, suggesting the presence of a quizartinib-resistant non-FLT3 mutant blast population. To see if we could identify specific mechanisms of off-target resistance, we performed targeted exome sequencing 33-AML relevant genes from relapse and pre-treatment DNA from all four patients and detected no new mutations in any genes other than FLT3 acquired at the time of disease relapse. Clonal genetic heterogeneity is not surprising in solid tumors, where multiple driver mutations frequently occur, but in CML and FLT3-ITD+ AML, where disease has been shown to be exquisitely dependent on oncogenic driver mutations, our studies suggest a surprising amount of clonal diversity. Our findings show that clinical TKI resistance in these diseases is amazingly intricate on the single allele level and frequently consists of both polyclonal and compound mutations that give rise to an complicated pool of TKI-resistant alleles that can change dynamically over time. In addition, we demonstrate that cell populations with off-target resistance can co-exist with other TKI-resistant populations, underscoring the emerging complexity of clinical TKI resistance. Such complexity argues strongly that monotherapy strategies in advanced CML and AML may be ultimately doomed to fail due to heterogeneous cell intrinsic resistance mechanisms. Ultimately, combination strategies that can address both on and off target resistance will be required to effect durable therapeutic responses.
Session Title: Tumor Heterogeneity and Evolution
Session Type: Educational Session
Session Start/End Time: Saturday, Apr 18, 2015, 1:00 PM – 3:00 PM
Location: Terrace Ballroom II-III (400 Level), Pennsylvania Convention Center
CME: CME-Designated
CME/CE Hours: 2
Session Description: One of the major challenges for both the measurement and management of cancer is its heterogeneity. Recent studies have revealed both extensive inter- and intra-tumor heterogeneity at the genotypic and phenotypic levels. Leaders in the field will discuss this challenge, its origins, dynamics and clinical importance. They will also review how we can best measure and deal with tumor heterogeneity, particularly intra-tumor heterogeneity.
Presentations:
Chairperson
Saturday, Apr 18, 2015, 1:00 PM – 3:00 PM
Carlo C. Maley. UCSF Helen Diller Family Comp. Cancer Center, San Francisco, CA
Universal biomarkers: How to handle tumor heterogeneity
Saturday, Apr 18, 2015, 1:00 PM – 1:25 PM
Carlo C. Maley. UCSF Helen Diller Family Comp. Cancer Center, San Francisco, CA
Discussion
Saturday, Apr 18, 2015, 1:25 PM – 1:30 PM
Heterogeneity of resistance to cancer therapy
Saturday, Apr 18, 2015, 1:30 PM – 1:55 PM
Ivana Bozic. HARVARD UNIV., Cambridge, MA
Discussion
Saturday, Apr 18, 2015, 1:55 PM – 2:00 PM
Determinants of phenotypic intra-tumor heterogeneity: integrative approach
Saturday, Apr 18, 2015, 2:00 PM – 2:25 PM
Andriy Marusyk, Michalina Janiszewska, Doris Tabassum. Dana-Farber Cancer Institute, Boston, MA, Dana-Farber Cancer Institute, Boston, MA
Discussion
Saturday, Apr 18, 2015, 2:25 PM – 2:30 PM
Cancer clonal complexity and evolution at the macro- and microheterogeneity scale
Saturday, Apr 18, 2015, 2:30 PM – 2:55 PM
Marco Gerlinger. Institute of Cancer Research, London, United Kingdom
Discussion
Saturday, Apr 18, 2015, 2:55 PM – 3:00 PM

From Ivana Bozic:

A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity.

Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA.

Nature. 2015 Sep 10;525(7568):261-4. doi: 10.1038/nature14971. Epub 2015 Aug 26.

PMID:

26308893

Similar articles

Select item 253494242.

Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers.

Bozic I, Nowak MA.

Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15964-8. doi: 10.1073/pnas.1412075111. Epub 2014 Oct 27.

PMID:

25349424

Free PMC Article

Similar articles

Select item 238053823.

Evolutionary dynamics of cancer in response to targeted combination therapy.

Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS, Yaqubie A, Kelly N, Le DT, Lipson EJ, Chapman PB, Diaz LA Jr, Vogelstein B, Nowak MA.

Elife. 2013 Jun 25;2:e00747. doi: 10.7554/eLife.00747.

PMID:

23805382

Free PMC Article

Similar articles

Select item 227228434.

The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers.

Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B.

Nature. 2012 Jun 28;486(7404):537-40. doi: 10.1038/nature11219.

PMID:

22722843

Free PMC Article

Similar articles

 

Session Title: Mechanisms of Cancer Therapy Resistance
Session Type: Educational Session
Session Start/End Time: Saturday, Apr 18, 2015, 1:00 PM – 3:00 PM
Location: Room 204, Pennsylvania Convention Center
CME: CME-Designated
CME/CE Hours: 2
Session Description: Despite dramatic advances in the treatment of cancer, therapy resistance remains the most significant hurdle in improving the outcome of cancer patients. In this session, we will discuss many different aspects of therapy resistance, including a summary of our current understanding of therapy resistant tumor cell populations as well as analyses of the challenges associated with intratumoral heterogeneity and adaptive responses to targeted therapies.
Presentations:
Chairperson
Saturday, Apr 18, 2015, 1:00 PM – 3:00 PM
Charles Swanton. Cancer Research UK London Research Institute, London, United Kingdom
Tumor heterogeneity and drug resistance
Saturday, Apr 18, 2015, 1:00 PM – 1:30 PM
Charles Swanton. Cancer Research UK London Research Institute, London, United Kingdom
Discussion

Saturday, Apr 18, 2015, 1:30 PM – 1:40 PM
Discussion Discussion, Discussion

Principles of resistance to targeted therapy
Saturday, Apr 18, 2015, 1:40 PM – 2:10 PM
Levi A. Garraway. Dana-Farber Cancer Institute, Boston, MA
Discussion

Saturday, Apr 18, 2015, 2:10 PM – 2:20 PM
Discussion Discussion, Discussion

Adaptive re-wiring of signaling pathways driving drug resistance to targeted therapies
Saturday, Apr 18, 2015, 2:20 PM – 2:50 PM
Taru E. Muranen. Harvard Medical School, Boston, MA
Discussion

Saturday, Apr 18, 2015, 2:50 PM – 3:00 PM
Discussion Discussion, Discussion

Presentation Abstract  

 

 

 

Abstract Number: 737
Presentation Title: Clonal evolution of the HER2 L755S mutation as a mechanism of acquired HER-targeted therapy resistance
Presentation Time: Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Location: Section 30
Poster Board Number: 29
Author Block: Xiaowei Xu1, Agostina Nardone1, Huizhong Hu1, Lanfang Qin1, Sarmistha Nanda1, Laura Heiser2, Nicholas Wang2, Kyle Covington1, Edward Chen1, Alexander Renwick1, Tamika Mitchell1, Marty Shea1, Tao Wang1, Carmine De Angelis1, Alejandro Contreras1, Carolina Gutierrez1, Suzanne Fuqua1, Gary Chamness1, Chad Shaw1, Marilyn Li1, David Wheeler1, Susan Hilsenbeck1, Mothaffar Fahed Rimawi1, Joe Gray2, C.Kent Osborne1, Rachel Schiff1. 1Baylor College of Medicine, Houston, TX; 2Oregon Health & Science University, Portland, OR
Abstract Body: Background: Targeting HER2 with lapatinib (L), trastuzumab (T), or the LT combination, is effective in HER2+ breast cancer (BC), but acquired resistance commonly occurs. In our 12-week neoadjuvant
trial (TBCRC006) of LT without chemotherapy in HER2+ BC, the overall pathologic complete response (pCR) rate was 27%. To investigate resistance mechanisms, we developed 10 HER2+ BC cell line
models resistant (R) to one or both drugs (LR/TR/LTR). To discover potential predictive markers/therapeutic targets to circumvent resistance, we completed genomic profiling of the cell lines and a
subset of pre-treatment specimens from TBCRC006.
Methods: Parental (P) and LR/TR/LTR lines of 10 cell line models were profiled with whole exome/RNA sequencing. Mutations detected in R lines but not in P lines of the same model were identified. Mutation-specific Q-PCR was designed for sensitive quantification. Resistant cell and xenograft tumor growth were measured in response to drugs. Whole exome sequencing (>100X) and Ampliseq of 17 baseline tumor/normal pairs from TBCRC006 were performed.
Results: We found and validated the HER2 L755S mutation in the BT474/ATCC-LTR line and BT474/AZ-LR line (in ~30% of DNA/RNA), in which the HER pathway was reactivated for resistance. Overexpression of this mutation was previously shown to induce LR in HER2-negative BC cell lines, and resistant growth of BT474/AZ-LR line is significantly inhibited by HER2-L755S-specific siRNA knock-down, suggesting its role as an acquired L/LT resistance driver in HER2+ BC. Sequencing of BT474/AZ-LR single cell clones found the mutation in ~30% of HER2 copies in every cell. Using mutation-specific Q-PCR, we found statistically higher HER2 L755S levels in two BT474 parentals compared to P lines of SKBR3, AU565, and UACC812. These data suggest that HER2 L755S resistant subclones preexist in the BT474 parentals and were selected by L treatment to become the major clone in the two R lines. The HER1/2 irreversible tyrosine kinase inhibitor (TKI) afatinib (Afa) robustly inhibited growth of BT474/AZ-LR and BT474/ATCC-LTR cells (IC50: Afa 0.02µM vs. L 3 µM) and BT474/AZ-LR xenografts. Whole exome sequencing/Ampliseq of TBCRC006 found the HER2 L755S mutation in 1/17 primaries. This patient did not achieve pCR. The variant was present in 2% of DNA on both platforms, indicating a subclonal event of the resistance mutation.
Conclusion: Acquired L/LT resistance in the two BT474 R lines is due to selection of HER2 L755S subclones present in parental cells. The higher HER2 L755S
levels in BT474 parentals compared with other parentals, and detection of its subclonal presence in a pre-treatment HER2+ BC patient, suggest that sensitive mutation detection methods will be needed to identify patients with potentially actionable HER family mutations in primary tumor. Treating this patient group
with an irreversible TKI like Afa may prevent resistance and improve clinical outcome of this subset of HER2+ BC.
Presentation Number: SY07-04
Presentation Title: The evolutionary landscape of CLL: Therapeutic implications
Presentation Time: Sunday, Apr 19, 2015, 2:25 PM – 2:45 PM
Location: Grand Ballroom (300 Level), Pennsylvania Convention Center
Author Block: Catherine J. Wu. Dana-Farber Cancer Institute, Boston, MA
Abstract Body: Clonal evolution is a key feature of cancer progression and relapse. Recent studies across cancers have demonstrated the extensive degree of intratumoral heterogeneity present within individual cancers. We hypothesized that evolutionary dynamics contribute to the variations in disease tempo and response to therapy that are highly characteristic of chronic lymphocytic leukemia (CLL). We have recently investigated this phenomenon by developing a pipeline that estimates the fraction of cancer cells harboring each somatic mutation within a tumor through integration of whole-exome sequence (WES) and local copy number data (Landau et al., Cell 2013). By applying this analysis approach to 149 CLL cases, we discovered earlier and later cancer drivers, uncovered patterns of clonal evolution in CLL and linked the presence of subclones harboring driver mutations with adverse clinical outcome. Thus, our study, generated from a heterogeneous sample cohort, strongly supports the concept that CLL clonal evolution arises from mass extinction and therapeutic bottlenecks which lead to the emergence of highly fit (and treatment resistant) subclones. We further hypothesized that epigenetic heterogeneity also shapes CLL clonal evolution through interrelation with genetic heterogeneity. Indeed, in recent work, we have uncovered stochastic methylation disorder as the primary cause of methylation changes in CLL and cancer in general, and that this phenomena impacts gene transcription, genetic evolution and clinical outcome. Thus, integrated studies of genetic and epigenetic heterogeneity in CLL have revealed the complex and diverse evolutionary trajectories of these cancer cells.
Immunotherapy is exquisitely suited for specifically and simultaneously targeting multiple lesions. We have developed an approach that leverages whole-exome sequencing to systematically identify personal tumor mutations with immunogenic potential, which can be incorporated as antigen targets in multi-epitope personalized therapeutic vaccines. We are pioneering this approach in an ongoing trial in melanoma and will now expand this concept to address diverse malignancies. Our expectation is that the choice of tumor neoantigens for a vaccine bypasses thymic tolerance and thus generates highly specific and potent high-affinity T cell responses to eliminate tumors in any cancer, including both ‘trunk’ and ‘branch’ lesions.

 

Abstract Number: LB-056
Presentation Title: TP53 and RB1 alterations promote reprogramming and antiandrogen resistance in advanced prostate cancer
Presentation Time: Sunday, Apr 19, 2015, 4:50 PM – 5:05 PM
Location: Room 122, Pennsylvania Convention Center
Author Block: Ping Mu, Zhen Cao, Elizabeth Hoover, John Wongvipat, Chun-Hao Huang, Wouter Karthaus, Wassim Abida, Elisa De Stanchina, Charles Sawyers. Memorial Sloan Kettering Cancer Center, New York, NY
Abstract Body: Castration-resistant prostate cancer (CRPC) is one of the most difficult cancers to treat with conventional methods and is responsible for nearly all prostate cancer deaths in the US. The Sawyers laboratory first showed that the primary mechanism of resistance to antiandrogen therapy is elevated androgen receptor (AR) expression. Research based on this finding has led to the development of next-generation antiandrogen: enzalutamide. Despite the exciting clinical success of enzalutamide, about 60% of patients exhibit various degrees of resistance to this agent. Highly variable responses to enzalutamide limit the clinical benefit of this novel antiandrogen, underscoring the importance of understanding the mechanisms of enzalutamide resistance. Most recently, an unbiased SU2C-Prostate Cancer Dream Team metastatic CRPC sequencing project led by Dr. Sawyers and Dr. Chinnaiyan revealed that mutations in the TP53 locus are the most significantly enriched alteration in CRPC tumors when compared to primary prostate cancers. Moreover, deletions and decreased expressions of the TP53 and RB1 loci (co-occurrence and individual occurrence) are more commonly associated with CRPC than with primary tumors. These results established that alteration of the TP53 and RB1 pathways are associated with the development of antiandrogen resistance.
By knockdowning TP53 or/and RB1 in the castration resistant LNCaP/AR model, we demonstrate that the disruption of either TP53 or RB1 alone confers significant resistance to enzalutamide both in vitro and in vivo. Strikingly, the co-inactivation of these pathways confers the most dramatic resistance. Since up-regulation of either AR or AR target genes is not observed in the resistant tumors, loss of TP53 and RB1 function confers enzalutamide resistance likely through an AR independent mechanism. In the clinic, resistance to enzalutamide is increasingly being associated with a transition to a poorly differentiated or neuroendocrine-like histology. Interestingly, we observed significant up-regulations of the basal cell marker Ck5 and the neuroendocrine-like cell marker Synaptophysin in the TP53 and RB1 inactivated cells, as well as down-regulation of the luminal cell marker Ck8. The differences between these markers became even greater after enzalutamide treatment. By using the p53-stabilizing drug Nutlin, level of p53 is rescued and consequently the the decrease of AR protein caused by RB1 and TP53 knockdown is reversed. These results strongly suggest that interference of TP53 and RB1 pathways confers antiandrogen resistance by “priming” prostate cancer cells to reprogramming or transdifferentiation, likely neuroendocrine-like differentiation, in response to treatment. Futher experiments will be performed to assess the molecular mechanism of TP53/RB1 alterations in mediating cell programming and conferring antiandrogen resistance.

 

Abstract Number: LB-146
Presentation Title: TGF-β-induced tumor heterogeneity and drug resistance of cancer stem cells
Presentation Time: Monday, Apr 20, 2015, 1:00 PM – 5:00 PM
Location: Section 41
Author Block: Naoki Oshimori1, Daniel Oristian1, Elaine Fuchs2. 1Rockefeller University, New York, NY; 2HHMI/Rockefeller University, New York, NY
Abstract Body: Among the most common and life-threatening cancers world-wide, squamous cell carcinoma (SCC) exhibit high rates of tumor recurrence following anti-cancer therapy. Subsets of cancer stem cells (CSCs) often escape anti-cancer therapeutics and promote recurrence. However, its sources and mechanisms that generate tumor heterogeneity and therapy-resistant cell population are largely unknown. Tumor microenvironment may drive intratumor heterogeneity by transmitting signaling factors, oxygen and metabolites to tumor cells depending on their proximity to the local sources. While the hypothesis is attractive, experimental evidence is lacking, and non-genetic mechanisms that drive functional heterogeneity remain largely unknown. As a potential non-genetic factor, we focused on TGF-β because of its multiple roles in tumor progression.
Here we devise a functional reporter system to monitor, track and modify TGF-β signaling in mouse skin SCC in vivo. Using this approach, we found that perivascular TGF-β in the tumor microenvironment generates heterogeneity in TGF-β signaling in neighboring CSCs. This heterogeneity is functionally important: small subsets of TGF-β-responding CSCs proliferate more slowly than their non-responding counterparts. They also exhibit invasive morphology and a malignant differentiation program compared to their non-responding neighbors. By lineage tracing, we show that although TGF-β-responding CSCs clonally expand more slowly they gain a growth advantage in a remarkable ability to escape cisplatin-induced apoptosis. We show that indeed it is their progenies that make a substantial contribution in tumor recurrence. Surprisingly, the slower proliferating state of this subset of CSCs within the cancer correlated with but did not confer the survival advantage to anti-cancer drugs. Using transcriptomic, biochemical and genetic analyses, we unravel a novel mechanism by which heterogeneity in the tumor microenvironment allows a subset of CSCs to respond to TGF-β, and evade anti-cancer drugs.
Our findings also show that TGF-β established ability to suppress proliferation and promote invasion and metastasis do not happen sequentially, but rather simultaneously. This new work build upon the roles of this factor in tumor progression, and sets an important paradigm for a non-genetic factor that produces tumor heterogeneity.
Abstract Number: LB-129
Presentation Title: Identifying tumor subpopulations and the functional consequences of intratumor heterogeneity using single-cell profiling of breast cancer patient-derived xenografts
Presentation Time: Monday, Apr 20, 2015, 1:00 PM – 5:00 PM
Location: Section 41
Author Block: Paul Savage1, Sadiq M. Saleh1, Ernesto Iacucci1, Timothe Revil1, Yu-Chang Wang1, Nicholas Bertos1, Anie Monast1, Hong Zhao1, Margarita Souleimanova1, Keith Szulwach2, Chandana Batchu2, Atilla Omeroglu1, Morag Park1, Ioannis Ragoussis1. 1McGill University, Montreal, QC, Canada; 2Fluidigm Corporation, South San Francisco, CA
Abstract Body: Human breast tumors have been shown to exhibit extensive inter- and intra-tumor heterogeneity. While recent advances in genomic technologies have allowed us to deconvolute this heterogeneity, few studies have addressed the functional consequences of diversity within tumor populations. Here, we identified an index case for which we have derived a patient-derived xenograft (PDX) as a renewable tissue source to identify subpopulations and perform functional assays. On pathology, the tumor was an invasive ductal carcinoma which was hormone receptor-negative, HER2-positive (IHC 2+, FISH average HER2/CEP17 2.4), though the FISH signal was noted to be heterogeneous. On gene expression profiling of bulk samples, the primary tumor and PDX were classified as basal-like. We performed single cell RNA and exome sequencing of the PDX to identify population structure. Using a single sample predictor of breast cancer subtype, we have identified single basal-like, HER2-enriched and normal-like cells co-existing within the PDX tumor. Genes differentially expressed between these subpopulations are involved in proliferation and differentiation. Functional studies distinguishing these subpopulations are ongoing. Microfluidic whole genome amplification followed by whole exome capture of 81 single cells showed high and homogeneous target enrichment with >75% of reads mapping uniquely on target. Variant calling using GATK and Samtools revealed founder mutations in key genes as BRCA1 and TP53, as well as subclonal mutations that are being investigated further. Loss of heterozygocity was observed in 16 TCGA cancer driver genes and novel mutations in 7 cancer driver genes. These findings may be important in understanding the functional consequences of intra-tumor heterogeneity with respect to clinically important phenotypes such as invasion, metastasis and drug-resistance.
Abstract Number: 2847
Presentation Title: High complexity barcoding to study clonal dynamics in response to cancer therapy
Presentation Time: Monday, Apr 20, 2015, 4:35 PM – 4:50 PM
Location: Room 118, Pennsylvania Convention Center
Author Block: Hyo-eun C. Bhang1, David A. Ruddy1, Viveksagar Krishnamurthy Radhakrishna1, Rui Zhao2, Iris Kao1, Daniel Rakiec1, Pamela Shaw1, Marissa Balak1, Justina X. Caushi1, Elizabeth Ackley1, Nicholas Keen1, Michael R. Schlabach1, Michael Palmer1, William R. Sellers1, Franziska Michor2, Vesselina G. Cooke1, Joshua M. Korn1, Frank Stegmeier1. 1Novartis Institutes for BioMedical Research, Cambridge, MA; 2Dana-Farber Cancer Institute, Boston, MA
Abstract Body: Targeted therapies, such as erlotinib and imatinib, lead to dramatic clinical responses, but the emergence of resistance presents a significant challenge. Recent studies have revealed intratumoral heterogeneity as a potential source for the emergence of therapeutic resistance. However, it is still unclear if relapse/resistance is driven predominantly by pre-existing or de novo acquired alterations. To address this question, we developed a high-complexity barcode library, ClonTracer, which contains over 27 million unique DNA barcodes and thus enables the high resolution tracking of cancer cells under drug treatment. Using this library in two clinically relevant resistance models, we demonstrate that the majority of resistant clones pre-exist as rare subpopulations that become selected in response to therapeutic challenge. Furthermore, our data provide direct evidence that both genetic and non-genetic resistance mechanisms pre-exist in cancer cell populations. The ClonTracer barcoding strategy, together with mathematical modeling, enabled us to quantitatively dissect the frequency of drug-resistant subpopulations and evaluate the impact of combination treatments on the clonal complexity of these cancer models. Hence, monitoring of clonal diversity in drug-resistant cell populations by the ClonTracer barcoding strategy described here may provide a valuable tool to optimize therapeutic regimens towards the goal of curative cancer therapies.
Abstract Number: 3590
Presentation Title: Resistance mechanisms to ALK inhibitors
Presentation Time: Tuesday, Apr 21, 2015, 8:00 AM -12:00 PM
Location: Section 31
Poster Board Number: 13
Author Block: Ryohei Katayama1, Noriko Yanagitani1, Sumie Koike1, Takuya Sakashita1, Satoru Kitazono1, Makoto Nishio1, Yasushi Okuno2, Jeffrey A. Engelman3, Alice T. Shaw3, Naoya Fujita1. 1Japanese Foundation for Cancer Research, Tokyo, Japan; 2Graduate School of Medicine, Kyoto University, Kyoto, Japan; 3Massachusetts General Hospital Cancer Center, Boston, MA
Abstract Body: Purpose: ALK-rearranged non-small cell lung cancer (NSCLC) was first reported in 2007. Approximately 3-5% of NSCLCs harbor an ALK gene rearrangement. The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with advanced ALK-rearranged NSCLC. Several next-generation ALK-TKIs have entered the clinic and have shown promising antitumor activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to one next-generation ALK-TKI – alectinib – and potential strategies to overcome this resistance.
Experimental Procedure: We established a cell line model of alectinib resistance, and analyzed resistant tumor specimens from patients who had relapsed on alectinib. Cell lines were also established under an IRB-approved protocol when there was sufficient fresh tumor tissue. We established Ba/F3 cells expressing EML4-ALK and performed ENU mutagenesis to compare potential crizotinib or alectinib-resistance mutations. In addition, we developed Ba/F3 models harboring ALK resistance mutations and evaluated the potency of multiple next-generation ALK-TKIs including 3rd generation ALK inhibitor in these models and in vivo. To elucidate structure-activity-relationships of ALK resistance mutations, we performed computational thermodynamic simulation with MP-CAFEE.
Results: We identified multiple resistance mutations, including ALK I1171N, I1171S, and V1180L, from the ENU mutagenesis screen and the cell line model. In addition we found secondary mutations at the I1171 residue from the Japanese patients who developed resistance to alectinib or crizotinib. Both ALK mutations (V1180L and I1171 mutations) conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Based on thermodynamics simulation, each resistance mutation is predicted to lead to distinct structural alterations that decrease the binding affinity of ALK-TKIs for ALK.
Conclusions: We have identified multiple alectinib-resistance mutations from the cell line model, patient derived cell lines, and tumor tissues, and ENU mutagenesis. ALK secondary mutations arising after alectinib exposure are sensitive to other next generation ALK-TKIs. These findings suggest a potential role for sequential therapy with multiple next-generation ALK-TKIs in patients with advanced, ALK-rearranged cancers.
Session Title: Mechanisms of Resistance: From Signaling Pathways to Stem Cells
Session Type: Major Symposium
Session Start/End Time: Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
Location: Terrace Ballroom II-III (400 Level), Pennsylvania Convention Center
CME: CME-Designated
CME/CE Hours: 2
Session Description: Even the most effective cancer therapies are limited due to the development of one or more resistance mechanisms. Acquired resistance to targeted therapies can, in some cases, be attributed to the selective propagation of a small population of intrinsically resistant cells. However, there is also evidence that cancer drugs themselves can drive resistance by triggering the biochemical- or genetic-reprogramming of cells within the tumor or its microenvironment. Therefore, understanding drug resistance at the molecular and biological levels may enable the selection of specific drug combinations to counteract these adaptive responses. This symposium will explore some of the recent advances addressing the molecular basis of cancer cell drug resistance. We will address how tumor cell signaling pathways become rewired to facilitate tumor cell survival in the face of some of our most promising cancer drugs. Another topic to be discussed involves how drugs select for or induce the reprogramming of tumor cells toward a stem-like, drug resistant fate. By targeting the molecular driver(s) of rewired signaling pathways and/or cancer stemness it may be possible to select drug combinations that prevent the reprogramming of tumors and thereby delay or eliminate the onset of drug resistance.
Presentations:
Chairperson
Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
David A. Cheresh. UCSD Moores Cancer Center, La Jolla, CA
Introduction
Tuesday, Apr 21, 2015, 10:30 AM -10:40 AM
Resistance to tyrosine kinase inhibitors: Heterogeneity and therapeutic strategies.
Tuesday, Apr 21, 2015, 10:40 AM -10:55 AM
Jeffrey A. Engelman. Massachusetts General Hospital, Boston, MA
Discussion
Tuesday, Apr 21, 2015, 10:55 AM -11:00 AM
NG04: Clinical acquired resistance to RAF inhibitor combinations in BRAF mutant colorectal cancer through MAPK pathway alterations
Tuesday, Apr 21, 2015, 11:00 AM -11:15 AM
Ryan B. Corcoran, Leanne G. Ahronian, Eliezer Van Allen, Erin M. Coffee, Nikhil Wagle, Eunice L. Kwak, Jason E. Faris, A. John Iafrate, Levi A. Garraway, Jeffrey A. Engelman. Massachusetts General Hospital Cancer Center, Boston, MA, Dana-Farber Cancer Institute, Boston, MA
Discussion
Tuesday, Apr 21, 2015, 11:15 AM -11:20 AM
SY27-02: Tumour heterogeneity and therapy resistance in melanoma
Tuesday, Apr 21, 2015, 11:20 AM -11:35 AM
Claudia Wellbrock. Univ. of Manchester, Manchester, United Kingdom

Presentation Number: SY27-02
Presentation Title: Tumour heterogeneity and therapy resistance in melanoma
Presentation Time: Tuesday, Apr 21, 2015, 11:20 AM -11:35 AM
Location: Terrace Ballroom II-III (400 Level), Pennsylvania Convention Center
Author Block: Claudia Wellbrock. Univ. of Manchester, Manchester, United Kingdom
Abstract Body: Solid tumors are structurally very complex; they consist of heterogeneous cancer cell populations, other non-cancerous cell types and a distinct extracellular matrix. Interactions of cancer cells with non-cancerous cells is well investigated, and our recent work in melanoma has demonstrated that the cellular environment that surrounds cancer cells has a major impact on the way a patient responds to MAP-kinase pathway targeting therapy.
We have shown that intra-tumor signaling within a heterogeneous tumor can have a major impact on the efficacy of BRAF and MEK inhibitors. With the increasing evidence of genetic and phenotypic heterogeneity within tumors, intra-tumor signaling between individual cancer-cell subpopulations is therefore a crucial factor that needs to be considered in future therapy approaches. Our work has identified the ‘melanocyte-lineage survival oncogene’ MITF as an important player in phenotypic heterogeneity (MITFhigh and MITFlow cells) in melanoma, and MITF expression levels are crucial for the response to MAP-kinase pathway targeted therapy. We found that ‘MITF heterogeneity’ can be caused by cell-autonomous mechanisms or by the microenvironment, including the immune-microenvironment.
We have identified various mechanisms underlying MITF action in resistance to BRAF and MEK inhibitors in melanoma. In MITFhigh expressing cells, MITF confers cell-autonomous resistance to MAP-kinase pathway targeted therapy. Moreover, it appears that in melanomas heterogeneous for MITF expression (MITFhigh and MITFlow cells), individual subpopulations of resistant and sensitive cells communicate and MITF can contribute to overall tumor-resistance through intra-tumor signaling. Finally, we have identified a novel approach of interfering with MITF action, which profoundly sensitizes melanoma to MAP-kinase pathway targeted therapy.
Discussion
Tuesday, Apr 21, 2015, 11:35 AM -11:40 AM
SY27-03: Breast cancer stem cell state transitions mediate therapeutic resistance
Tuesday, Apr 21, 2015, 11:40 AM -11:55 AM
Max S. Wicha. University of Michigan, Comprehensive Cancer Center, Ann Arbor, MI
Discussion
Tuesday, Apr 21, 2015, 11:55 AM -12:00 PM
SY27-04: Induction of cancer stemness and drug resistance by EGFR blockade
Tuesday, Apr 21, 2015, 12:00 PM -12:15 PM
David A. Cheresh. UCSD Moores Cancer Center, La Jolla, CA

 

Cellular Reprogramming in Carcinogenesis: Implications for Tumor Heterogeneity, Prognosis, and Therapy
Session Type: Major Symposium
Session Start/End Time: Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
Location: Room 103, Pennsylvania Convention Center
CME: CME-Designated
CME/CE Hours: 2
Session Description: Cancers, both solid and liquid, consist of phenotypically heterogeneous cell types that make up the full cellular complement of disease. Deep sequencing of bulk cancers also frequently reveals a genetic intratumoral heterogeneity that reflects clonal evolution in space and in time and under the influence of treatment. How the distinct phenotypic and genotypic cells contribute to individual cancer growth and progression is incompletely understood. In this symposium, we will discuss issues of cancer heterogeneity and effects on growth and treatment resistance, with emphasis on cancer cell functional properties and influences of the microenvironment, interclonal genomic heterogeneity, and lineage relationships between cancer cells with stem cell and differentiated properties. Understanding these complex cellular relationships within cancers will have critical implications for devising more effective treatments.
Presentations:
Chairperson
Tuesday, Apr 21, 2015, 10:30 AM -12:30 PM
Peter B. Dirks. Univ. of Toronto Hospital for Sick Children, Toronto, ON, Canada
Introduction

Tuesday, Apr 21, 2015, 10:30 AM -10:40 AM

Origins, evolution and selection in childhood leukaemia
Tuesday, Apr 21, 2015, 10:40 AM -11:00 AM
Tariq Enver. Cancer Research UK, London, United Kingdom
Discussion

Tuesday, Apr 21, 2015, 11:00 AM -11:05 AM

Cytokine-controlled stem cell plasticity inintestinal tumorigenesis
Tuesday, Apr 21, 2015, 11:05 AM -11:25 AM
Florian Greten. Georg-Speyer-Haus, Frankfurt, Germany
Discussion

Tuesday, Apr 21, 2015, 11:25 AM -11:30 AM

SY23-03: Intratumoural heterogeneity in human serous ovarian carcinoma
Tuesday, Apr 21, 2015, 11:30 AM -11:50 AM
John P. Stingl. Cancer Research UK Cambridge Research Inst., Cambridge, United Kingdom
Discussion

Tuesday, Apr 21, 2015, 11:50 AM -11:55 AM

Functional and genomic heterogeneity in brain tumors
Tuesday, Apr 21, 2015, 11:55 AM -12:15 PM

 

Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):851-6. doi: 10.1073/pnas.1320611111. Epub 2015 Jan 5.

Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity.

Meyer M1, Reimand J2, Lan X3, Head R1, Zhu X1, Kushida M1, Bayani J4, Pressey JC5, Lionel AC6, Clarke ID7, Cusimano M8, Squire JA9, Scherer SW6, Bernstein M10, Woodin MA5, Bader GD11, Dirks PB12.

Author information

Abstract

Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies.

—————————————————————————————————

 

739: Tumor cell plasticity with transition to a mesenchymal phenotype is a mechanism of chemoresistance that is reversed by Notch pathway inhibition in lung adenocarcinoma
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Khaled A. Hassan. University Of Michigan, Ann Arbor, MI

745: Oncostatin M receptor activation leads to molecular targeted therapy resistance in non-small cell lung cancer
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Kazuhiko Shien1, Vassiliki A. Papadimitrakopoulou1, Dennis Ruder1, Nana E. Hanson1, Neda Kalhor1, J. Jack Lee1, Waun Ki Hong1, Ximing Tang1, Roy S. Herbst2, Luc Girard3, John D. Minna3, Jonathan M. Kurie1, Ignacio I. Wistuba1, Julie G. Izzo1. 1University of Texas MD Anderson Cancer Center, Houston, TX; 2Yale Cancer Center, Yale School of Medicine, New Haven, CT; 3Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX

746: Activation of EGFR bypass signaling through TGFα overexpression induces acquired resistance to alectinib in ALK-translocated lung cancer cells
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Tetsuo Tani, Hiroyuki Yasuda, Junko Hamamoto, Aoi Kuroda, Daisuke Arai, Kota Ishioka, Keiko Ohgino, Ichiro Kawada, Katsuhiko Naoki, Hayashi Yuichiro, Tomoko Betsuyaku, Kenzo Soejima. Keio University, Tokyo, Japan

752: Elucidating the mechanisms of acquired resistance in lung adenocarcinomas
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Sandra Ortiz-Cuarán1, Lynnette Fernandez-Cuesta1, Christine M. Lovly2, Marc Bos1, Matthias Scheffler3, Sebastian Michels3, Kerstin Albus4, Lydia Meyer4, Katharina König4, Ilona Dahmen1, Christian Mueller1, Luca Ozretić4, Lars Tharun4, Philipp Schaub1, Alexandra Florin4, Berit Pinther1, Nike Bahlmann1, Sascha Ansén3, Martin Peifer1, Lukas C. Heukamp4, Reinhard Buettner4, Martin L. Sos1, Jürgen Wolf3, William Pao2, Roman K. Thomas1. 1University of Cologne, Cologne, Germany; 2Department of Medicine, Vanderbilt University, Nashville, TN; 3Department of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany; 4Institute of Pathology, University Hospital Cologne, Cologne, Germany

760: On the evolution of erlotinib-resistant NSCLC subpopulations
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Michael E. Ramirez1, Robert J. Steininger, III1, Lani F. Wu2, Steven J. Altschuler2. 1UT Southwestern, Dallas, TX; 2UCSF, San Francisco, CA
763: Implications of resistance patterns with NSCLC targeted agents
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
David J. Stewart, Paul Wheatley-Price, Rob MacRae, Jason Pantarotto. University of Ottawa, Ottawa, ON, Canada

 

768: A kinome-wide siRNA screen identifies modifiers of sensitivity to the EGFR T790M-targeted tyrosine kinase inhibitor (TKI), AZD9291, in EGFR mutant lung adenocarcinoma
Sunday, Apr 19, 2015, 1:00 PM – 5:00 PM
Eiki Ichihara1, Joshua A. Bauer2, Pengcheng Lu3, Fei Ye3, Darren Cross4, William Pao1, Christine M. Lovly1. 1Vanderbilt University School of Medicine, Nashville, TN; 2Vanderbilt Institute of Chemical Biology High-Throughput Screening Facility, Nashville, TN; 3Vanderbilt University Medical Center, Nashville, TN; 4AstraZeneca Oncology Innovative Medicines, United Kingdom

LB-055: Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations
Sunday, Apr 19, 2015, 4:35 PM – 4:50 PM
Leanne G. Ahronian1, Erin M. Sennott1, Eliezer M. Van Allen2, Nikhil Wagle2, Eunice L. Kwak1, Jason E. Faris1, Jason T. Godfrey1, Koki Nishimura1, Kerry D. Lynch3, Craig H. Mermel1, Elizabeth L. Lockerman1, Anuj Kalsy1, Joseph M. Gurski, Jr.1, Samira Bahl4, Kristin Anderka4, Lisa M. Green4, Niall J. Lennon4, Tiffany G. Huynh3, Mari Mino-Kenudson3, Gad Getz1, Dora Dias-Santagata3, A. John Iafrate3, Jeffrey A. Engelman1, Levi A. Garraway2, Ryan B. Corcoran1. 1Massachusetts General Hospital Cancer Center, Boston, MA; 2Dana Farber Cancer Institute, Boston, MA; 3Massachusetts General Hospital Department of Pathology, Boston, MA; 4Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA

 

Other Articles on this Site Related to Tumor Heterogeneity Include

Notes On Tumor Heterogeneity: Targets and Mechanisms, from the 2015 AACR Meeting in Philadelphia PA

Issues in Personalized Medicine: Discussions of Intratumor Heterogeneity from the Oncology Pharma forum on LinkedIn

Issues in Personalized Medicine in Cancer: Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

CANCER COMPLEXITY: Heterogeneity in Tumor Progression and Drug Response – 2015 Annual Symposium @Koch Institute for Integrative Cancer Research at MIT – W34, 6/12/2015 9:00 AM EDT – 4:30 PM EDT

In vitro Models of Tumor Microenvironment for New Cancer Target and Drug Discovery, 11/17 – 11/19/2014, Hyatt Boston Harbor

What can we expect of tumor therapeutic response?

 

Read Full Post »


The Path to Personalized Medicine

Larry H. Bernstein, MD, FCAP, Curator

LPBI

3.10 The Path to Personalized Medicine

Margaret A. Hamburg, and Francis S. Collins
N Engl J Med Jul 22, 2010; 363(4): 301-304
http://stanford.edu/class/gene210/files/readings/hamburg_collins.pdf

Researchers have discovered hundreds of genes that harbor variations contributing to human illness, identified genetic variability in patients’ responses to dozens of treatments, and begun to target the molecular causes of some diseases. In addition, scientists are developing and using diagnostic tests based on genetics or other molecular mechanisms to better predict patients’ responses to targeted therapy.

The challenge is to deliver the benefits of this work to patients. As the leaders of the National Institutes of Health (NIH) and the Food and Drug Administration (FDA), we have a shared vision of personalized medicine and the scientific and regulatory structure needed to support its growth. Together, we have been focusing on the best ways to develop new therapies and optimize prescribing by steering patients to the right drug at the right dose at the right time.

We recognize that myriad obstacles must be overcome to achieve these goals. These include scientific challenges, such as determining which genetic markers have the most clinical significance, limiting the off-target effects of gene-based therapies, and conducting clinical studies to identify genetic variants that are correlated with a drug response. There are also policy challenges, such as finding a level of regulation for genetic tests that both protects patients and encourages innovation. To make progress, the NIH and the FDA will invest in advancing translational and regulatory science, better define regulatory pathways for coordinated approval of codeveloped diagnostics and therapeutics, develop risk-based approaches for appropriate review of diagnostics to more accurately assess their validity and clinical utility, and make information about tests readily available.

Moving from concept to clinical use requires basic, translational, and regulatory science. On the basic-science front, studies are identifying many genetic variations underlying the risks of both rare and common diseases. These newly discovered genes, proteins, and pathways can represent powerful new drug targets, but currently there is insufficient evidence of a downstream market to entice the private sector to explore most of them. To fill that void, the NIH and the FDA will develop a more integrated pathway that connects all the steps between the identification of a potential therapeutic target by academic researchers and the approval of a therapy for clinical use. This pathway will include NIH-supported centers where researchers can screen thousands of chemicals to find potential drug candidates, as well as public– private partnerships to help move candidate compounds into commercial development.

The NIH will implement this strategy through such efforts as the Therapeutics for Rare and Neglected Diseases (TRND) program. With an open environment, permitting the involvement of all the world’s top experts on a given disease, the TRND program will enable certain promising compounds to be taken through the preclinical development phase — a time-consuming, high-risk phase that pharmaceutical firms call “the valley of death.” Besides accelerating the development of drugs to treat rare and neglected diseases, the TRND program may also help to identify molecularly distinct subtypes of some common diseases, which may lead to new therapeutic possibilities, either through the development of targeted drugs or the salvaging of abandoned or failed drugs by identifying subgroups of patients likely to benefit from them.

Another important step will be expanding efforts to develop tissue banks containing specimens along with information linking them to clinical outcomes. Such a resource will allow for a much broader assessment of the clinical importance of genetic variation across a range of conditions. For example, the NIH is now supporting genome analysis in participants in the Framingham Heart Study, obtaining biologic specimens from babies enrolled in the National Children’s Study, and performing detailed genetic analysis of 20 types of tumors to improve our understanding of their molecular basis.

As for translational science, the NIH is harnessing the talents and strengths of its Clinical and Translational Sciences Award program, which currently funds 46 centers and has awardees in 26 states, and its Mark O. Hatfield Clinical Research Center (the country’s largest research hospital, in Bethesda, MD) to translate basic research findings into clinical applications. Just as the NIH served as an initial home for human gene therapy, the Hatfield Center can provide specialized diagnostic services for rare and neglected diseases, offer a state-of-the-art manufacturing facility for novel therapies, and pioneer clinical trials of other innovative biologic therapies, such as those using human embryonic stem cells or induced pluripotent stem cells.

Today, about 10% of labels for FDA-approved drugs contain pharmacogenomic information — a substantial increase since the 1990s but hardly the limit of the possibilities for this aspect of personalized medicine.1 There has been an explosion in the number of validated markers but relatively little independent analysis of the validity of the tests used to identify them in biologic specimens.

The success of personalized medicine depends on having accurate diagnostic tests that identify patients who can benefit from targeted therapies. For example, clinicians now commonly use diagnostics to determine which breast tumors overexpress the human epidermal growth factor receptor type 2 (HER2), which is associated with a worse prognosis but also predicts a better response to the medication trastuzumab. A test for HER2 was approved along with the drug (as a “companion diagnostic”) so that clinicians can better target patients’ treatment (see table).

Increasingly, however, the use of therapeutic innovations for a specific patient is contingent on or guided by the results from a diagnostic test that has not been independently reviewed for accuracy and reliability by the FDA. For example, in 2006, the FDA granted approval to rituximab (Rituxan) for use as part of firstline treatment in patients with certain cancers. Since then, a laboratory has marketed a test with the claim that it can identify the approximately 20% of patients who are more likely to have a response to the drug. The FDA has not reviewed the scientific justification for this claim, but health care providers may use the test results to guide therapy. This undermines the approval process that has been established to protect patients, fails to ensure that physicians have accurate information on which to make treatment decisions, and decreases the chances that physicians will adopt a new therapeutic–diagnostic approach. The FDA is coordinating and clarifying the process that manufacturers must follow regarding their claims, including defining the times when a companion diagnostic must be approved or cleared before or concurrently with approval of the therapy. The agency will ensure that claims that a test will improve the care of patients are based on solid evidence, and developers will get straightforward, consistent advice about the standards for review and the best way to demonstrate that the combination works as intended.

In February, the NIH and the FDA announced a new collaboration on regulatory and translational science to accelerate the translation of research into medical products and therapies; this effort includes a joint funding opportunity for regulatory science. Working with academic experts, companies, doctors, patients, and the public, we intend to help make personalized medicine a reality. A recent example of this collaboration is an effort to identify new investigational agents to which certain tumors, identified by their genetic signatures, are responsive. Real progress will come when clinically beneficial new products and approaches are incorporated into clinical practice. As the field advances, we expect to see more efficient clinical trials based on a more thorough understanding of the genetic basis of disease. We also anticipate that some previously failed medications will be recognized as safe and effective and will be approved for subgroups of patients with specific genetic markers.

Read Full Post »


The genome editing toolbox: a spectrum of approaches for targeted modification

Larry H. Bernstein, MD, FCAP, Curator

LPBI

3.9 The genome editing toolbox: a spectrum of approaches for targeted modification

Joseph K Cheng,  Hal S Alper

Current Opinion in Biotechnology 2014; 30C:87-94.
http://dx.doi.org:/10.1016/j.copbio.2014.06.005

The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology.
The genome editing toolbox: a spectrum of approaches for targeted modification. Available from:https://www.researchgate.net/publication/263816651_The_genome_editing_toolbox_a_spectrum_of_approaches_for_targeted_modification[accessed May 12, 2015].

Read Full Post »


Limits to forecasting in personalized medicine: An overview

Larry h. Bernstein, MD, FCAP, Curator

LPBI

3.8 Limits to forecasting in personalized medicine: An overview

John Ioannidis
International Journal of Forecasting 2009; 25(4):773-783.
http://dx.doi.org:/10.1016/j.ijforecast.2009.05.003

Biomedical research is generating massive amounts of information about potential prognostic factors for health and disease. However, few prognostic factors or systems are robustly validated, and still fewer have made a convincing difference in health outcomes or in prolonging life expectancy. For most diseases and outcomes, a considerable component of the prognostic variance remains unknown, and may remain so for the foreseeable future. I discuss here some of the main problems in medical forecasting that pose obstacles to personalized medicine. Their recognition may help identify solutions to improve personalized prognosis, or at least understand and cope with the component of the future that we cannot predict. Much prognostic research is stuck at generating “publishable units”, without any interest in conclusively proving their worth, let alone moving them into real life applications. Information is reported selectively and reporting is deficient. The replication record of prognostic claims is poor. Even among replicated prognostic effects, few are convincingly shown to add much information besides what is already known through more simple, traditional measurements. There are few efforts to systematize prognostic knowledge. Most prognostic effects are subtle when traced to the molecular level, where most current research operates. Many researchers, clinicians, and the public are not appropriately educated to interpret prognostic information. We still have not even agreed on what the important health outcomes are that we want to predict and intervene for, and some subjectivity may be unavoidable. Finally, without concomitant effective, affordable, and non-harmful interventions, prognosis alone is of questionable value, and wrong prognosis or a wrong interpretation thereof can be harmful. The identification of these problems also suggests a roadmap on what could be done to amend them. Solutions include a systematic approach to the design, conduct, reporting, replication, and clinical translation of prognostic research; as well as the education of researchers, clinicians, and the general public. Finally, we need to recognize that perfect individualized health forecasting is not a realistic target in the foreseeable future, and we have to live with considerable residual uncertainty.
Limits to forecasting in personalized medicine: An overview. Available from:https://www.researchgate.net/publication/223240409_Limits_to_forecasting_in_personalized_medicine_An_overview[accessed May 12, 2015].

Read Full Post »

« Newer Posts - Older Posts »