Feeds:
Posts
Comments

Posts Tagged ‘pancreatic β-cell’

Under Nutrition Early in Life may lead to Obesity

Reporter and Curator: Dr. Sudipta Saha, Ph.D.

With the growing worldwide obesity epidemic, including huge populations in developing countries, such as China, India, Mexico and Brazil, the causes of this health and economic catastrophe have been increasingly studied. It is well known that metabolic syndrome and obesity exhibit a high correlation with low or absent physical exercise practices and the consumption of calorie-rich diets in developing countries; however, although the inhabitants may actually experience a nutrition transition, high levels of overweight and obese individuals could not be justified solely by diet and physical inactivity, other hallmarks, such as metabolic programming by the under nutrition early in life and epigenetic modification could also be underlining the obesity onset.

In addition to the pathophysiological aspects that have emerged from studies on metabolic programming caused by environmental insults during fetal life, another interesting point that is relevant to this issue is the role of epigenetic changes in the increased risk of developing metabolic diseases, such as type 2 diabetes and obesity, later in life. Epigenetic mechanisms, such as DNA methylation and/or nucleoprotein acetylation/methylation, are crucial to the normal/physiological development of several tissues in mammals, and they involve several mechanisms to guarantee fluctuations of enzymes and other proteins that regulate the metabolism. As previously reviewed, the intrauterine phase of development is particularly important for the genomic processes related to genes associated with metabolic pathways. Therefore, this phase of life may be particularly important for nutritional disturbance. In humans who experienced the Dutch famine Winter in 1944–1945 and in rats that were deprived of food in utero, epigenetic modifications were detected in the insulin-like growth factor 2 (IGF2) and pancreatic and duodenal home box 1 (Pdx1), which are the major factors involved in pancreas development and pancreatic β-cell maturation. Although it is known that the pancreas and the pancreatic β-cells develop/maturate during the embryonic phase, the postnatal life is also crucial for the maintenance processes that control the β-cell mass, such as proliferation, neogenesis and apoptosis. Nevertheless, no data on metabolic programming as the result of protein-restricted diet during lactation only have yet been reported, and no direct association with epigenetic modifications has been observed; on the other hand, because stressor insults during the milk suckling phase can lead to disturbances in glucose metabolism, hypothalamic neurons, ANS activity and β-cell mass/function of the pancreatic β-cells in rodents, further studies are needed on this topic.

Two decades ago, it was observed that low birth weight was related to adult chronic, non-transmissible diseases, such as type 2 diabetes, cardiovascular disease and obesity. It has been speculated that a nutritional injury during perinatal growth, including uterine and early postnatal life, may contribute to adapting the adult metabolism toward nutritional restriction. However, if an abundant diet is offered to people who have been undernourished during the perinatal life, this opportunity induces a metabolic shift toward the storage of energy and high fat tissue accumulation, thus leading to high risks of the onset of metabolic/coronary diseases onset. These observations led to the introduction of the term DOHaD (Developmental Origins of Health and Disease) previously known as the Barker thrifty phenotype hypothesis. Currently, the concept of DOHaD is extended to any other insults during perinatal life, pregnancy and/or lactation, such as underweight, overweight, diabetic or hyperplasic mothers. This concept also includes any type of stressful situations that may predispose babies or pups to develop metabolic disorders when they reach adulthood.

Source References:

 

http://www.nutritionandmetabolism.com/content/9/1/80

 

http://www.ncbi.nlm.nih.gov/pubmed/19955786?dopt=Abstract&holding=f1000,f1000m,isrctn

 

http://www.ncbi.nlm.nih.gov/pubmed/12886432?dopt=Abstract&holding=f1000,f1000m,isrctn

 

http://www.ncbi.nlm.nih.gov/pubmed/8733829?dopt=Abstract&holding=f1000,f1000m,isrctn

 

http://www.ncbi.nlm.nih.gov/pubmed/9478036?dopt=Abstract&holding=f1000,f1000m,isrctn

 

 

Read Full Post »

%d bloggers like this: