Feeds:
Posts
Comments

Posts Tagged ‘CRISPR Biology • Genome Editing • Gene Drives • DNA Repair • Model and Industrial Organisms • Technology Development • Stem Cells/Cancer • Genome-Wide Screens’


Real Time Coverage @BIOConvention #BIO2019: Genome Editing and Regulatory Harmonization: Progress and Challenges

Reporter: Stephen J Williams, PhD @StephenJWillia2

 

Genome editing offers the potential of new and effective treatments for genetic diseases. As companies work to develop these treatments, regulators are focused on ensuring that any such products meet applicable safety and efficacy requirements. This panel will discuss how European Union and United States regulators are approaching therapeutic use of genome editing, issues in harmonization between these two – and other – jurisdictions, challenges faced by industry as regulatory positions evolve, and steps that organizations and companies can take to facilitate approval and continued efforts at harmonization.

 

CBER:  because of the nature of these gene therapies, which are mainly orphan, there is expedited review.  Since they started this division in 2015, they have received over 1500 applications.

Spark: Most of the issues were issues with the primary disease not the gene therapy so they had to make new endpoint tests so had talks with FDA before they entered phase III.   There has been great collaboration with FDA,  now they partnered with Novartis to get approval outside US.  You should be willing to partner with EU pharmas to expedite the regulatory process outside US.  In China the process is new and Brazil is behind on their gene therapy guidance.  However there is the new issue of repeat testing of your manufacturing process, as manufacturing of gene therapies had been small scale before. However he notes that problems with expedited review is tough because you don’t have alot of time to get data together.  They were lucky that they had already done a randomized trial.

Sidley Austin:  EU regulatory you make application with advance therapy you don’t have a national option, the regulation body assesses a committee to see if has applicability. Then it goes to a safety committee.  EU has been quicker to approve these advance therapies. Twenty five percent of their applications are gene therapies.  Companies having issues with manufacturing.  There can be issues when the final application is formalized after discussions as problems may arise between discussions, preliminary applications, and final applications.

Sarepta: They have a robust gene therapy program.  Their lead is a therapy for DMD (Duchenne’s Muscular Dystrophy) where affected males die by 25. Japan and EU have different regulatory applications and although they are similar and data can be transferred there is more paperwork required by EU.  The US uses an IND for application. Global feedback is very challenging, they have had multiple meetings around the world and takes a long time preparing a briefing package….. putting a strain on the small biotechs.  No company wants to be either just EU centric or US centric they just want to get out to market as fast as possible.

 

Please follow LIVE on TWITTER using the following @ handles and # hashtags:

@Handles

@pharma_BI

@AVIVA1950

@BIOConvention

# Hashtags

#BIO2019 (official meeting hashtag)

 

 

 

Read Full Post »


LIVE 9/21 8AM to 10:55 AM Expoloring the Versatility of CRISPR/Cas9 at CHI’s 14th Discovery On Target, 9/19 – 9/22/2016, Westin Boston Waterfront, Boston

http://www.discoveryontarget.com/

http://www.discoveryontarget.com/crispr-therapies/

Leaders in Pharmaceutical Business Intelligence (LPBI) Group is a

Media Partner of CHI for CHI’s 14th Annual Discovery on Targettaking place September 19 – 22, 2016 in Boston.

In Attendance, streaming LIVE using Social Media

Aviva Lev-Ari, PhD, RN

Editor-in-Chief

http://pharmaceuticalintelligence.com

#BostonDOT16

@BostonDOT

 

COMMENTS BY Stephen J Williams, PhD

EXPLORING THE VERSATILITY OF CRISPR/Cas9

 

8:00 Chairperson’s Opening Remarks

TJ Cradick , Ph.D., Head of Genome Editing, CRISPR Therapeutics

 

@CRISPRTX

 

8:10 Functional Genomics Using CRISPR-Cas9: Technology and Applications

Neville Sanjana, Ph.D., Core Faculty Member, New York Genome Center and Assistant Professor, Department of Biology & Center for Genomics and Systems Biology, New York University

 

CRISPR Cas9 is easier to target to multiple genomic loci; RNA specifies DNA targeting; with zinc finger nucleases or TALEEN in the protein specifies DNA targeting

 

  • This feature of crisper allows you to make a quick big and cheap array of a GENOME SCALE Crisper Knock out (GeCKO) screening library
  • How do you scale up the sgRNA for whole genome?; for all genes in RefSeq, identify consitutive exons using RNA-sequencing data from 16 primary human tissue (alot of genes end with ‘gg’) changing the bases on 3’ side negates crisper system but changing on 5’ then crisper works fine
  • Rank sequences to be specific for target
  • Cloned array into lentiviral and put in selectable markers
  • GeCKO displays high consistency betweens reagents for the same gene versus siRNA; GeCKO has high screening sensitivity
  • 98% of genome is noncoding so what about making a library for intronic regions (miRNA, promoter regions?)
  • So you design the sgRNA library by taking 100kb of gene-adjacent regions
  • They looked at CUL3; (data will soon be published in Science)
  • Do a transcription CHIP to verify the lack of binding of transcription factor of interest
  • Can also target histone marks on promoter and enhancer elements
  • NYU wants to explore this noncoding screens
  • sanjanalab.org

 

@nyuniversity

 

8:40 Therapeutic Gene Editing With CRISPR/Cas9

TJ Cradick , Ph.D., Head of Genome Editing, CRISPR Therapeutics

 

NEHJ is down and dirty repair of single nonhomologous end but when have two breaks the NEHJ repair can introduce the inversions or deletions

 

    • High-throughput screens are fine but can limit your view of genomic context; genome searches pick unique sites so use bioinformatic programs  to design specific guide Rna
    • Bioinformatic directed, genome wide, functional screens
    • Compared COSMID and CCTOP; 320 COSMID off-target sites, 333 CCtop off target
    • Young lab GUIDESeq program genome wide assay useful to design guides
    • If shorten guide may improve specificity; also sometime better sensitivity if lengthen guide

 

  • Manufacturing of autologous gene corrected product ex vivo gene correction (Vertex, Bayer, are partners in this)

 

 

They need to use a clones from multiple microarrays before using the GUidESeq but GUIDEseq is better for REMOVING the off targets than actually producing the sgRNA library you want (seems the methods for library development are not fully advanced to do this)

 

The score sometimes for the sgRNA design programs do not always give the best result because some sgRNAs are genome context dependent

9:10 Towards Combinatorial Drug Discovery: Mining Heterogeneous Phenotypes from Large Scale RNAi/Drug Perturbations

Arvind Rao, Ph.D., Assistant Professor, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center

 

Bioinformatics in CRISPR screens:  they looked at image analysis of light microscopy of breast cancer cells and looked for phenotypic changes

 

  • Then they modeled in a small pilot and then used the algorithm for 20,000 images (made morphometric measurements)
  • Can formulate training statistical algorithms to make a decision tree how you classify data points
  • Although their algorithms worked well there was also human input from scientists

Aggregate ranking of hits programs available on web like LINKS

 

@MDAndersonNews

 

10:25 CRISPR in Stem Cell Models of Eye Disease

Alexander Bassuk, M.D., Ph.D., Associate Professor of Pediatrics, Department of Molecular and Cellular Biology, University of Iowa

 

Blind athlete Michael Stone, biathlete, had eye disease since teenager helped fund and start the clinical trial for Starbardt disease; had one bad copy of ABCA4, heterozygous (inheritable in Ahkenazi Jewish) – a recessive inheritable mutation with juvenile macular degeneration

  • Also had another male in family with disease but he had another mutation in the RPGR gene
  • December 2015 paper Precision Medicine: Genetic Repair of retinitis pigmentosa in patient derived stem cells
  • They were able to correct the iPSCs in the RPGR gene derived from patient however low efficiency of repair, scarless repair, leaves changes in DNA, need clinical grade iPSCs, and need a humanized model of RPGR

@uiowa

10:55 CRISPR in Mouse Models of Eye Disease

Vinit Mahajan, M.D., Ph.D., Assistant Professor of Ophthalmology and Visual Sciences, University of Iowa College of Medicine

  • degeneration of the retina will see brown spots, the macula will often be preserved but retinal cells damaged but with RPGR have problems with peripheral vision, retinitis pigmentosa get tunnel vision with no peripheral vision (a mouse model of PDE6 Knockout recapitulates this phenotype)
  • the PDE6 is linked to the rhodopsin GTP pathway
  • rd1 -/- mouse has something that looks like retinal pigmentosa; has mutant PDE6; is actually a nonsense mutation in rd1 so they tried a crisper to fix in mice
  • with crisper fix of rd1 nonsense mutation the optic nerve looked comparible to normal and the retina structure restored
  • photoreceptors layers- some recovery but not complete
  • sequence results show the DNA is a mosaic so not correcting 100% but only 35% but stil leads to a phenotypic recovery; NHEJ was about 12% to 25% with large deletions
  • histology is restored in crspr repaired mice
  • CRSPR off target effects: WGS and analyze for variants SNV/indels, also looked at on target and off target regions; there were no off target SNVs indels while variants that did not pass quality control screening not a single SNV
  • Rhodopsin mutation accounts for a large % of patients (RhoD190N)
  • injection of gene therapy vectors: AAV vector carrying CRSPR and cas9 repair templates

CAPN mouse models

  • family in Iowa have dominant mutation in CAPN5; retinal degenerates
  • used CRSPR to generate mouse model with mutation in CAPN5 similar to family mutation
  • compared to other transgenic methods CRSPR is faster to produce a mouse model

To Follow LIVE CONFERENCE COVERAGE PLEASE FOLLOW ON TWITTER USING

Meeting #: #BostonDOT16

Meeting @: @BostonDOT

 

Overall good meeting #s:

#personalizedmedicine

#innovation

#cancer

#immunology

#immunooncology

#pharmanews

#CRSPR

#geneediting

#crisper

#biotech

 

AND FOLLOW these @

@pharma_BI

@AVIVA_1950

@BiotechNews

@CHI

@FierceBiotech

Read Full Post »


Genome Engineering: The CRISPR-Cas Revolution, August 17 – 20, 2016, Cold Spring Harbor Laboratory

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 7/17/2016

http://www.cshlpress.com/pdf/sample/2016/symp80/Symp80_Doudna.pdf?utm_source=Email&utm_medium=email&utm_content=DoudnaConversation&utm_campaign=July2016Email2

 

cshl_logo_mc

https://meetings.cshl.edu/meetings.aspx?meet=CRISPR&year=16

Genome Engineering: The CRISPR-Cas Revolution

August 17 – 20, 2016

Abstract Deadline: May 27, 2016

Organizers:

Jennifer Doudna, University of California, Berkeley/HHMI
Maria Jasin
, Memorial Sloan Kettering Cancer Center, NY
Jonathan Weissman
, UCSF/HHMI

You are cordially invited to participate in the second meeting on Genome Engineering: The CRISPR-Cas Revolution at Cold Spring Harbor Laboratory. The meeting will begin with dinner and the first session on the evening of Wednesday, August 17, 2016, and will conclude with lunch on Saturday, August 20. 

The specific goal for this meeting is to foster fruitful and creative interactions between researchers interested in applying these systems to genome engineering and related advances in a wide variety of organisms, together with scientists studying the basic biology of CRISPR-Cas and related bacterial defense systems. 

This meeting will consist of six oral sessions plus one poster session; speakers will be invited as well as selected from submitted abstracts.

Topics:

•    CRISPR Biology

•    Genome Editing

•    Gene Drives 

•    DNA Repair

•    Model and Industrial Organisms

•    Technology Development 

•    Stem Cells/Cancer

•    Genome-Wide Screens

Pre-Meeting Workshop – Wednesday, August 17 from 9 to 6 pm (see below for payment options)

Technical Workshop 9 a.m. to 12:30 p.m.

Lunch 12:30 to 2 p.m.

Commercial Exhibits/Demos 2 to 4 p.m.

Short Talks by Graduate Students 4 to 6 p.m.

Dinner 6 to 7:30 p.m.

Confirmed Chairs:

Ethan Bier, University of California, San Diego

Jacob Corn, University of California, Berkeley

Joseph DeRisi, HHMI/University of California, San Francisco

James Haber, Brandeis University

Danwei Huangfu, Memorial Sloan-Kettering Cancer Center

J. Keith Joung, Massachusetts General Hospital

Jin-Soo Kim, Seoul National University, South Korea

Silvana Konermann, Massachusetts Institute of Technology (Feng Zhang Laboratory)

Nancy Maizels, University of Washington

Luciano Marraffini, The Rockefeller University

Aviv Regev, Broad Institute of MIT and Harvard

David Sabatini, Whitehead Institute for Biomedical Research

William Skarnes, Wellcome Trust Sanger Institute, UK

Julianne Smith, Cellectis, France

Erik Sontheimer, University of Massachusetts Medical School

Frank Stegmeier, KSQ Therapeutics

Francesca Storici, Georgia Tech

Fyodor Urnov, Sangamo BioSciences, Inc.

Abstracts should contain interesting and exciting material and must be submitted electronically by the abstract deadline. Selection of material for oral and poster presentation will be made by the organizers and individual session chairs. Status (talk/poster) of abstracts will be posted on our web site as soon as decisions have been made by the organizers.

We are eager to have as many young people as possible attend since they are likely to benefit most from this meeting. We have applied for funds from government and industry to partially support graduate students and postdocs. Apply in writing to Val Pakaluk stating need for financial support – preference is given to those submitting abstracts.

Partial support provided by Advanced Analytical and Editas Medicine.

We look forward to seeing you at Cold Spring Harbor Laboratory in August 2016.

Pricing:

Academic Package $1,140
Graduate/PhD Student Package $955
Corporate Package $1,445
Academic/Student No-Housing Package $780
Corporate No-Housing Package $975 

Pre-Meeting Workshop $100

Pre-Meeting Workshop (with housing) $300

Read Full Post »