Feeds:
Posts
Comments

Posts Tagged ‘CD47-SIRPα pathway’


CD47: Target Therapy for Cancer

Author/Curator: Tilda Barliya

“A research team from Stanford University’s School of Medicine is now one step closer to uncovering a cancer treatment that could be applicable across the board in killing every kind of cancer tumor” (1). It appeared that their antibody-drug against the CD47 protein, enabled the shrinking of all tumor cells. After completing their animal studies the researchers now move into a human phase clinical trials. CD47 has been previously studied and evaluated for its role in multiple cells, some of this data however, is somewhat controversy. So where do we stand?

CD47

CD47 (originally named integrin-associated protein (IAP)) is a cell surface protein of the immunoglobulin (Ig) superfamily, which is heavily glycosylated and expressed by virtually all cells in the body and overexpressed in many types of cancer  including breast, ovarian, colon, prostate and others (3). CD47 was first recognized as a 50 kDa protein associated and copurified with the  Alpha-v-Beta-3 integrin in placenta and neutrophil granulocytes and later shown to have the capacity to regulate integrin function and the responsiveness of leukocytes to RGD-containing extracellular matrix proteins. CD47 has also been shown to be identical to the OA-3/OVTL3 antigen highly expressed on most ovarian carcinomas (4,5).

CD47 consists of an extracellular IgV domain, a five times transmembrane-spanning domain, and a short alternatively spliced cytoplasmic tail. In both humans and mice, the cytoplasmic tail can be found as four different splice isoforms ranging from 4 to 36 amino acids, showing different tissue expression patterns (3).

CD47 interactions (3, 6):

  • Thrombospondin-1 (TSP-1) – a secreted glycoprotein that plays a role in vascular development and angiogenesis. Binding of TSP-1 to CD47 influences several fundamental cellular functions including cell migration and adhesion, cell proliferation or apoptosis, and plays a role in the regulation of angiogenesis and inflammation.
  • Signal-regulatory protein-alpha (SIRPα) – an inhibitory transmembrane receptor present on myeloid cells. The CD47/SIRPα interaction leads to bidirectional signaling, resulting in different cell-to-cell responses including inhibition of phagocytosis, stimulation of cell-cell fusion, and T-cell activation.
  • Integrins – several membrane integrins, most commonly integrin avb3. These interactions result in CD47/integrin complexes that effect a range of cell functions including adhesion, spreading and migration

These interactions with multiple proteins and cells types create several important functions, which include:

  • Cell proliferation – cell proliferation is heavily dependent on cell type as both activation and loss of CD47 can result in enhanced proliferation. For example, activation of CD47 with TSP-1 in wild-type cells inhibits proliferation and reduces expression of stem cell transcription factors. In cancer cells however, activation of CD47 with TSP-1 increases proliferation of human U87 and U373 astrocytoma. it is likely that CD47 promotes proliferation via the PI3K/Akt pathway in cancerous cells but not normal cells (7).  Loss of CD47 allows sustained proliferation of primary murine endothelial cells and enables these cells to spontaneously reprogram to form multipotent embryoid body-like clusters (8).
  • Apoptosis – Ligation of CD47 by anti-CD47 mAbs was found to induce apoptosis in a number of different cell types (3). For example: Of the two SIRP-family members known to bind the CD47 IgV domain (SIRPα and SIRPγ), SIRPα as a soluble Fc-fusion protein does not induce CD47-dependent apoptosis, hile SIRPα or SIRPγ bound onto the surface of beads induces apoptosis through CD47 in Jurkat T cells and the myelomonocytic cell line U937.
  • Migration – CD47  role on cell migration was first demonstrated in neutrophils, these effects were shown to be dependent on avb3 integrins, which interact with and are activated by CD47 at the plasma membrane. In cancer, Blocking CD47 function has been shown to inhibit migration and metastasis in a variety of tumor models. Blockade of CD47 by neutralizing antibodies reduced migration and chemotaxis in response to collagen IV in melanomaprostate cancer and ovarian cancer-derived cells (9).
  • Angiogenesis – The mechanism of the anti-angiogenic activity of CD47 is not fully understood, but introduction of CD47 antibodies and TSP-1 have been shown to inhibit nitric oxide (NO)-stimulated responses in both endothelial and vascular smooth muscle cells (10). More so, CD47 signaling influences the SDF-1 chemokine pathway, which plays a role in angiogenesis (11). (12)
  • Inflammatory response – Interactions between endothelial cell CD47 and leukocyte SIRPγ regulate T cell transendothelial migration (TEM) at sites of inflammation. CD47 also functions as a marker of self on murine red blood cells which allows RBC to avoid phagocytosis. Tumor cells can also evade macrophage phagocytosis through the expression of CD47 (2, 13).

It appears that CD47 ligation induce different responses, depending on cell type and partner for ligation.

Therapeutic and clinical aspect of CD47 in human cancer:

CD47 is overexpressed in many types of human cancers  and its known function as a “don’t eat me” signal, suggests the potential for targeting the CD47-SIRPα pathway as a common therapy for human malignancies (2,13). Upregulation of CD47 expression in human cancers also appears to influence tumor growth and dissemination. First, increased expression of CD47 in several hematologic malignancies was found to be associated with a worse clinical prognosis, and in ALL to predict refractoriness to standard chemotherapies (13, 14-16). Second, CD47 was demonstrated to regulate tumor metastasis and dissemination in both MM and NHL (13, 17).

Efforts have been made to develop therapies inhibiting the CD47-SIRPα pathway, principally through blocking monoclonal antibodies directed against CD47, but also possibly with a recombinant SIRPα protein that can also bind and block CD47.

Figure 2

Chao MP et al. 2012 Combination strategies targeting CD47 in cancer

While monotherapies targeting CD47 were efficacious in several pre-clinical tumor models, combination strategies involving inhibition of the CD47-SIRPα pathway offer even greater therapeutic potential. Specifically, antibodies targeting CD47-SIRPα can be included in combination therapies with other therapeutic antibodies, macrophage-enhancing agents, chemo-radiation therapy, or as an adjuvant therapy to inhibit metastasis (13).

For example, anti-SIRPα antibody was found to potentiate  antibody-dependent cellular cytotoxicity (ADCC) mediated by the anti-Her2/Neu antibody trastuzumab against breast cancer cells (18).  CD47–SIRPα interactions and SIRPα signaling negatively regulate trastuzumab-mediated ADCC in vitro and antibody-dependent elimination of tumor cells in vivo

More so, chemo-radiation therapy-mediated upregulation of cell surface calreticulin may potentially augment the activity of anti-CD47 antibody. However, this approach may also lead to increased toxicity as cell surface calreticulin is expressed on non-cancerous cells undergoing apoptosis, a principle effect of chemo-radiation therapy (19).

Highlights:

  • Phagocytic cells, macrophages, regulate tumor growth through phagocytic clearance
  • CD47 binds SIRPα on phagocytes which delivers an inhibitory signal for phagocytosis
  • A blocking anti-CD47 antibody enabled phagocytic clearance of many human cancers
  • Phagocytosis depends on a balance of anti-(CD47) and pro-(calreticulin) signals
  • Anti-CD47 antibody synergized with an FcR-engaging antibody, such as rituximab

Summary

Evasion of immune recognition is a major mechanism by which cancers establish and propagate disease. Recent data has demonstrated that the innate immune system plays a key role in modulating tumor phagocytosis through the CD47-SIRPα pathway. Careful development of reagents that can block the CD47/SIRPα interaction may indeed be useful to treat many forms of cancer without having too much of a negative side effect in terms of inducing clearance of host cells. Therapeutic approaches inhibiting this pathway have demonstrated significant efficacy, leading to the reduction and elimination of multiple tumor types.

Dr. Weissman says: “We are now hopeful that the first human clinical trials of anti-CD47 antibody will take place at Stanford in mid-2014, if all goes wellClinical trials may also be done in the United Kingdom”. These clinical trials must be designed so that the data they generate will produce a valid scientific result!!!

REFERENCES

1. By Sara Gates:  Cancer Drug That Shrinks All Tumors Set To Begin Human Clinical Trials. http://www.huffingtonpost.com/2013/03/28/cancer-drug-shrinks-tumors_n_2972708.html

2. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS, Wang J, Contreras-Trujillo H, Martin R, Cohen JD, Lovelace P, Scheeren FA, Chao MP, Weiskopf K, Tang C, Volkmer AK, Naik TJ, Storm TA, Mosley AR, Edris B, Schmid SM, Sun CK, Chua MS, Murillo O, Rajendran P, Cha AC, Chin RK, Kim D, Adorno M, Raveh T, Tseng D, Jaiswal S, Enger PØ, Steinberg GK, Li G, So SK, Majeti R, Harsh GR, van de Rijn M, Teng NN, Sunwoo JB, Alizadeh AA, Clarke MF, Weissman IL. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6662-6667. http://www.pnas.org/content/early/2012/03/20/1121623109

3. Oldenborg PL. CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN Hematology Volume 2013 (2013), Article ID 614619, 19 pages.  http://www.hindawi.com/isrn/hematology/2013/614619/

4. G. Campbell, P. S. Freemont, W. Foulkes, and J. Trowsdale, “An ovarian tumor marker with homology to vaccinia virus contains an IgV- like region and multiple transmembrane domains,”Cancer Research, vol. 52, no. 19, pp. 5416–5420, 1992. http://cancerres.aacrjournals.org/content/52/19/5416.long

5. L. G. Poels, D. Peters, Y. van Megen et al., “Monoclonal antibody against human ovarian tumor-associated antigens,” Journal of the National Cancer Institute, vol. 76, no. 5, pp. 781–791, 1986. http://www.ncbi.nlm.nih.gov/pubmed/3517452

6. CD47. Wikipedia. http://en.wikipedia.org/wiki/CD47

7. Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, Gies JP, Takeda K (February 2011). “Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway”. Glia 59 (2): 308–319. http://www.ncbi.nlm.nih.gov/pubmed/21125662

8. Kaur S, Soto-Pantoja DR, Stein EV, Liu C, Elkahloun AG, Pendrak ML, Nicolae A, Singh SP, Nie Z, Levens D, Isenberg JS, Roberts DD.  “Thrombospondin-1 Signaling through CD47 Inhibits Self-renewal by Regulating c-Myc and Other Stem Cell Transcription Factors”Sci Rep 2013: 3: 1673. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628113/

9. Shahan TA, Fawzi A, Bellon G, Monboisse JC, Kefalides NA. “Regulation of tumor cell chemotaxis by type IV collagen is mediated by a Ca(2+)-dependent mechanism requiring CD47 and the integrin alpha(V)beta(3)”. J. Biol. Chem 2000. 275 (7): 4796–4802. http://www.jbc.org/content/275/7/4796

10. Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD. “CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1”. J. Biol. Chem  2006. 281 (36): 26069–26080.  http://www.jbc.org/content/281/36/26069

11. Smadja DM, d’Audigier C, Bièche I, Evrard S, Mauge L, Dias JV, Labreuche J, Laurendeau I, Marsac B, Dizier B, Wagner-Ballon O, Boisson-Vidal C, Morandi V, Duong-Van-Huyen JP, Bruneval P, Dignat-George F, Emmerich J, Gaussem P. “Thrombospondin-1 is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties”. Arterioscler. Thromb. Vasc. Biol  2011. 31 (3): 551–559. http://atvb.ahajournals.org/content/31/3/551

12. G. D. Grossfeld, D. A. Ginsberg, J. P. Stein et al., “Thrombospondin-1 expression in bladder cancer: association with p53 alterations, tumor angiogenesis, and tumor progression,” Journal of the National Cancer Institute 1997 vol. 89, no. 3, pp. 219–227. http://www.scopus.com/record/display.url?eid=2-s2.0-18744423089&origin=inward&txGid=9C86356DDB0B6816ACCBF90F9CA44E92.WlW7NKKC52nnQNxjqAQrlA%3a2

13. Chao MP, Weissman IL, Majeti R. “The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications”Curr. Opin. Immunol 2012. 24 (2): 225–32. http://www.sciencedirect.com/science/article/pii/S095279151200012Xhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319521/

14. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, Jr, van Rooijen N, Weissman IL. Cd47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–299. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726837/

15. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F, Park CY, Weissman IL, Majeti R. Therapeutic antibody targeting of cd47 eliminates human acute lymphoblastic leukemia.Cancer Res. 2011;71 (4):1374–1384. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041855/

16. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, Park CY, et al. Anti-cd47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-hodgkin lymphoma. Cell. 2010;142(5):699–713. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943345/

17. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL. Extranodal dissemination of non-hodgkin lymphoma requires cd47 and is inhibited by anti-cd47 antibody therapy. Blood.2011;118(18):4890–4901. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208297/

18. Zhao XW, van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M, Otten MA, Finetti P, Van Egmond M, Matozaki T, Kraal G, Birnbaum D, et al. Cd47-signal regulatory protein-alpha (sirpalpha) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci U S A.2011;108(45):18342–18347. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215076/

19. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61. http://www.ncbi.nlm.nih.gov/pubmed/17187072

Other related articles on this Open Access Online Scientific Journal include the following:

I. By: Larry Bernstein MD. Treatment for Metastatic HER2 Breast Cancer https://pharmaceuticalintelligence.com/2013/03/03/treatment-for-metastatic-her2-breast-cancer/

II. By: Tilda Barliya PhD. Colon Cancer.  https://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/

III. By: Ritu Saxena PhD. In focus: Triple Negative Breast Cancer. https://pharmaceuticalintelligence.com/2013/01/29/in-focus-triple-negative-breast-cancer/

Read Full Post »