Feeds:
Posts
Comments

Archive for the ‘Cancer and Therapeutics’ Category


Standard of care for localization of impalpable breast lesions, aka Magseed, @ UCSF as First Adopter

Reporter: Aviva Lev-Ari, PhD, RN

PRESS RELEASE

23rd January 2017

  

UCSF first to adopt Magseed as standard of care for localization of impalpable breast lesions

Magseed technology guides surgeons during a breast lumpectomy to simplify treatment and improve patient experience

 

Cambridge, UK & San Francisco, CA, 23rd January 2017: Endomag, the cancer healthcare company, announced today that the University of California, San Francisco (UCSF) has become the first US site to adopt Magseed™ as its standard of care for localization of impalpable breast lesions. Magseed™ is a simpler, more effective alternative to traditional wire localization methods.

 

Breast cancer is the most common form of cancer in women, with 1.7 million new cases of breast cancer globally every year, and is expected to double by 2030. Due to a rise in national screening programmes and an increase in public awareness, breast cancer is being caught at an earlier stage meaning that the tumors are smaller, less defined and harder to feel, with as many as 50% of all breast tumors impalpable at the time of diagnosis. In these cases, a technique called wire localization is typically used by surgeons to locate the tumor.

 

Although widely used, wire localization commonly causes complications. On average 1 in every 4 breast wire localizations result in cancerous tissue being left behind and requiring additional surgery because the wire has become dislodged between when it was implanted and when it was removed during surgery. Additionally, there is a risk of infection due to the wire protruding from the skin, so the placement of the wire must be done on the same day as surgery. These issues result in unnecessary anxiety for patients, delays to the surgical lists and fewer patients being treated as a consequence.

 

Dr. Eric Mayes, CEO of Endomag noted “The wire localization technique has remained largely the same since it was introduced over 30 years ago and it causes a lot of anxiety for patients. We wanted to create a technique that could simplify the localization process and improve the patient experience.”

 

Magseed™ is smaller than a grain of rice and can be placed into the tumor for up to 30 days, allowing the patient to return home ahead of surgery. Once implanted, the seed is not easily dislodged and patients are not restricted in movement or activity. During surgery the seed is detected with the Sentimag® probe to guide accurate removal of the tumor and maximising the amount of healthy tissue left behind. Unlike radioactive alternatives that involve strict regulatory oversight and complex logistics, the Magseed™ technique can be widely adopted by any hospital, regardless of size.

 

Dr. Laura Esserman (Breast Surgeon, UCSF) “We are excited to have a set of safe, easy to use tools that will improve the efficiency of identifying breast lesions and dramatically improve the experience of patients and clinicians, as well as the workflow in the operating room.”

 

 

Dr. Michael Alvarado (Breast Surgeon, UCSF) “We have been looking for a better alternative to wire localization for some time, as the wire procedure adds additional stress for the patients on the day of surgery and often causes delays to our operating schedule. Very early in our evaluation of the magnetic seed technique we found that we could avoid a same-day placement, and the surgeries could be completed in less time, without compromising accuracy. This offers a tangible benefit to both our clinical team and, most importantly, our patients.”

 

ENDS

 

Photo: X-ray showing a complete surgical specimen with negative margins and Magseed™ in the centre, next to the cancer.

For a high res image please contact lorna.cuddon@zymecommunications.com

 

For further information please contact:

Zyme Communications

Lorna Cuddon

Tel: +44 (0)7811 996 942

Email: lorna.cuddon@zymecommunications.com

 

About Endomag http://www.endomag.com 

Endomag is a pioneer in the use of magnetism for minimally-invasive surgical guidance.  By addressing unmet needs in availability, affordability and workflow efficiency for surgical oncology, we support our mission to improve the global standard of cancer care for everyone, everywhere.

 

Founded as a spin-out from the University of Houston and the University College London (UCL) in 2007, we continue to develop our unique clinical platform that uses magnetic fields to power diagnostic and therapeutic devices.  The company has sales in over 30 countries worldwide and is headquartered in Cambridge, United Kingdom.

 

UC Disclaimer

The information stated above was prepared by Endomag, and reflects solely the opinion of the corporation. Nothing in this statement shall be construed to imply any support or endorsement of Endomag, or any of its products, by The Regents of the University of California, its officers, agents and employees.

SOURCE

From: Lorna Cuddon <lorna.cuddon@zymecommunications.com>

Reply-To: <lorna.cuddon@zymecommunications.com>

Date: Monday, January 23, 2017 at 9:16 AM

To: Aviva Lev-Ari <AvivaLev-Ari@alum.berkeley.edu>

Subject: UCSF first to adopt Magseed as standard of care for localization of impalpable breast lesions

Advertisements

Read Full Post »


One blood sample can be tested for a comprehensive array of cancer cell biomarkers: R&D at WPI

Curator: Marzan Khan, B.Sc

 

A team of mechanical engineers at Worcester Polytechnic Institute (WPI) have developed a fascinating technology – a liquid biopsy chip that captures and detects metastatic cancer cells, just from a small blood sample of cancer patients(1). This device is a recent development in the scientific field and holds tremendous potential that will allow doctors to spot signs of metastasis for a variety of cancers at an early stage and initiate an appropriate course of treatment(1).

Metastasis occurs when cancer cells break away from their site of origin and spread to other parts of the body via the lymph or the bloodstream, where they give rise to secondary tumors(2). By this time, the cancer is at an advanced stage and it becomes increasingly difficult to fight the disease. The cells that are shed by primary and metastatic cancers are called circulating tumor cells (CTCs) and their numbers lie in the range of 1–77,200/m(3). The basis of the liquid biopsy chip test is to capture these circulating tumor cells in the patient’s blood and identify the cell type through specific interaction with antibodies(4).

The chip is comprised of individual test units or small elements, about 3 millimeters wide(4). Each small element contains a network of carbon nanotube sensors in a well which are functionalized with antibodies(4). These antibodies will bind cell-surface antigens or protein markers unique for each type of cancer cell. Specific interaction between a cell surface protein and its corresponding antibody is a thermodynamic event that causes a change in free energy which is transduced into electricity(3). This electrical signature is picked up by the semi-conducting carbon nanotubes and can be seen as electrical spikes(4). Specific interactions create an increase in electrical signal, whereas non-specific interactions cause a decrease in signal or no change at all(4). Capture efficiency of cancer cells with the chip has been reported to range between 62-100%(4).

The liquid biopsy chip is also more advanced than microfluidics for several reasons. Firstly, the nanotube-chip arrays can capture as well as detect cancer cells, while microfluidics can only capture(4). Samples do not need to be processed for labeling or fixation, so the cell structures are preserved(4). Unlike microfluidics, these nanotubes will also capture tiny structures called exosomes spanning the nanometer range that are produced from cancer cells and carry the same biomarkers(4).

Pancreatic cancer is the fourth leading cause of cancer-associated deaths in the United states, with a survival window of 5 years in only 6% of the cases with treatment(5). In most patients, the disease has already metastasized at the time of diagnosis due to the lack of early-diagnostic markers, affecting some of the major organs such as liver, lungs and the peritoneum(5,6). Despite surgical resection of the primary tumor, the recurrence of local and metastatic tumors is rampant(5). Metastasis is the major cause of mortality in cancers(5). The liquid biopsy chip, that identifies CTCs can thus become an effective diagnostic tool in early detection of cancer as well as provide information into the efficacy of treatment(3). At present, ongoing experiments with this device involve testing for breast cancers but Dr. Balaji Panchapakesan and his team of engineers at WPI are optimistic about incorporating pancreatic and lung cancers into their research.

REFERENCES

1.Nanophenotype. Researchers build liquid biopsy chip that detects metastatic cancer cells in blood: One blood sample can be tested for a comprehensive array of cancer cell biomarkers. 27 Dec 2016. Genesis Nanotechnology,Inc

https://genesisnanotech.wordpress.com/2016/12/27/researchers-build-liquid-biopsy-chip-that-detects-metastatic-cancer-cells-in-blood-one-blood-sample-can-be-tested-for-a-comprehensive-array-of-cancer-cell-markers/

2.Martin TA, Ye L, Sanders AJ, et al. Cancer Invasion and Metastasis: Molecular and Cellular Perspective. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013.

https://www.ncbi.nlm.nih.gov/books/NBK164700/

3.F Khosravi, B King, S Rai, G Kloecker, E Wickstrom, B Panchapakesan. Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells. 23 Dec 2013. IEEE Nanotechnology Magazine 7 (4), 20-26

Nanotube devices for digital profiling of cancer biomarkers and circulating tumor cells

4.Farhad Khosravi, Patrick J Trainor, Christopher Lambert, Goetz Kloecker, Eric Wickstrom, Shesh N Rai and Balaji Panchapakesan. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube–CTC chip. 29 Sept 2016. Nanotechnology. Vol 27, No.44. IOP Publishing Ltd

http://iopscience.iop.org/article/10.1088/0957-4484/27/44/44LT03/meta

5.Seyfried, T. N., & Huysentruyt, L. C. (2013). On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis18(1-2), 43–73.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597235/

6.Deeb, A., Haque, S.-U., & Olowoure, O. (2015). Pulmonary metastases in pancreatic cancer, is there a survival influence? Journal of Gastrointestinal Oncology6(3), E48–E51. http://doi.org/10.3978/j.issn.2078-6891.2014.114

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4397254/

Other related articles published in this Open Access Online Scientific Journal include the following:

 

Liquid Biopsy Chip detects an array of metastatic cancer cell markers in blood – R&D @Worcester Polytechnic Institute, Micro and Nanotechnology Lab

Reporters: Tilda Barliya, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/12/28/liquid-biopsy-chip-detects-an-array-of-metastatic-cancer-cell-markers-in-blood-rd-worcester-polytechnic-institute-micro-and-nanotechnology-lab/

 

Trovagene’s ctDNA Liquid Biopsy urine and blood tests to be used in Monitoring and Early Detection of Pancreatic Cancer

Reporters: David Orchard-Webb, PhD and Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2016/07/06/trovagenes-ctdna-liquide-biopsy-urine-and-blood-tests-to-be-used-in-monitoring-and-early-detection-of-pancreatic-cancer/

 

Liquid Biopsy Assay May Predict Drug Resistance

Curator: Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/11/06/liquid-biopsy-assay-may-predict-drug-resistance/


New insights in cancer, cancer immunogenesis and circulating cancer cells

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/04/15/new-insights-in-cancer-cancer-immunogenesis-and-circulating-cancer-cells/

 

Prognostic biomarker for NSCLC and Cancer Metastasis

Larry H. Bernstein, MD, FCAP, Curato

https://pharmaceuticalintelligence.com/2016/03/24/prognostic-biomarker-for-nsclc-and-cancer-metastasis/

 

Monitoring AML with “cell specific” blood test

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

 

Diagnostic Revelations

Larry H. Bernstein, MD, FCAP, Curator

https://pharmaceuticalintelligence.com/2015/11/02/diagnostic-revelations/

 

Circulating Biomarkers World Congress, March 23-24, 2015, Boston: Exosomes, Microvesicles, Circulating DNA, Circulating RNA, Circulating Tumor Cells, Sample Preparation

Reporter: Aviva Lev-Ari, PhD, RN

https://pharmaceuticalintelligence.com/2015/03/03/circulating-biomarkers-world-congress-march-23-24-2015-boston-exosomes-microvesicles-circulating-dna-circulating-rna-circulating-tumor-cells-sample-preparation/

 

 

 

Read Full Post »


Projected Sales in 2020 of World’s Top Ten Oncology Drugs

Reporter: Aviva Lev-Ari, PhD, RN

 

UPDATED on 1/17/2017

The top 15 best-selling cancer drugs in 2022

All told, by 2022, the top 15 cancer drugs are expected to collectively make almost $90 billion in sales. To put that in perspective, that represents about one-fourth of the entire U.S. pharma market in 2014, according to QuintilesIMS data. It’s also bigger than pharma’s haul in Japan or China that year.

It will likely be no revelation that three drugs among the top six on our list—provided courtesy of EvaluatePharma and Chempetitive—come from the highly touted PD-1/PD-L1 or checkpoint inhibitor class.

The top 15 best-selling cancer drugs in 2022

SOURCE

http://www.fiercepharma.com/special-report/special-report-top-15-best-selling-cancer-drugs-2022?utm_medium=nl&utm_source=internal&mrkid=993697&mkt_tok=eyJpIjoiWW1aa1kyRmpaV1poTlRZMiIsInQiOiJkSEU3WFdzNHd4cnhmc2NQN0tSUjNVbEY4NDQyUUdHZ29NY2cwWEM1OHRxRmdWWHowVDY5eDMxWkdhZ1ZucHAxTjk5ZmJRWERKT2V4UExCUFd3U25vTkdQWk9ZQWVPQkszUVlVeUFjTjVqcXJJVDB1a1ZDWmNJZ0U4UHhEQUhHdiJ9

Projected Sales in 2020 of World’s Top Ten Oncology Drugs

 

Top Oncology Medicines

Projected Sales in 2020

Revlimid (Celgene)

Generic Name: Lenalidomide

$10,110 Million

 

Imbruvica (AbbVie/J&J)

Generic Name: Ibrutinib

$8,213 Million

 

Avastin (Roche)

Generic Name: Bevacizumab

$ 6,733 Million

 

Opdivo (BMS)

Generic Name: Nivolumab

$ 6,201 Million

 

Xtandi (Medivation & Astellas)

Generic Name: Enzalutamide

$5,700 Million

 

Rituxan (Roche)

Generic Name: Rituximab

$5,407 Million

 

Ibrance (Pfizer)

Generic Name: Palbociclib

$4,722 Million

 

Perjeta (Roche)

Generic Name: Pertuzumab

$4,669 Million

 

Herceptin (Roche)

Generic Name: Trastuzumab

$4,573 Million

 

Keytruda (Merck)

Generic Name: Pembrolizumab

$3,560 Million


SOURCE

https://igeahub.com/2016/04/01/worlds-top-ten-cancer-drugs-by-2020/

World’s Top Ten Cancer Drugs by 2020

Igea gives professionals, patients and investors interested in pharmaceuticals, biotechnology, healthcare technology, diagnostics and medical devices the most relevant, actionable news, information and analysis available anywhere. Our goal is to provide expert insights, analysis and information from industry leaders with a deep understanding of life sciences, medicine and healthcare. Created and curated by Luca Dezzani, MD, Global Medical Director at Novartis Oncology*, Igea offers an insider’s view on the most important developments in life sciences, healthcare technology, digital health and more.


Read Full Post »


Prostate Cancer Patient: Consider Monitoring vs Surgery or Radiation, only if Life Expectancy is less than a Decade

Reporter: Aviva Lev-Ari, PhD, RN

Boldface by ALA

 

Rethinking Prostate Cancer, in THE MOST NOTABLE MEDICAL FINDINGS OF 2016

For many years, American physicians have screened their older male patients for prostate cancer by looking at the level of a particular protein in the blood. The protein, called prostate-specific antigen (P.S.A.), can indicate the presence of a tumor long before any symptoms materialize. Recently, though, there has been a movement within the medical community against P.S.A. testing; since prostate cancers typically grow very slowly and rarely cause discomfort, the thinking goes, early screening may not be all that useful. The U.S. Preventive Services Task Force, based on data from two large clinical trials, currently recommends against routine screening, but other expert groups (using the same evidence) have countered that men should be allowed to choose for themselves.

Now the dispute has become even more fraught. In October, The New England Journal of Medicine published a study by a group of British researchers that examined three classes of prostate-cancer patients: those who had received surgery, those who had received radiation therapy, and those whose disease had been carefully monitored without intervention. After ten years, there was no difference in survival rates among the three groups. Active treatment does not change the over-all risk of death, and this was the headline in most news reports. But largely overlooked in the press was that metastases, meaning spread of the cancer beyond the prostate gland to tissues in the pelvis and to bone, occurred three times more frequently in those being monitored than in those who received surgery or radiation. Not surprisingly, the cancer also progressed more quickly in these men.

In an editorial that accompanied the study, Anthony D’Amico, a radiation oncologist at Boston’s Dana-Farber Cancer Institute, argued that men should be informed of the risk of metastasis and of its consequences, particularly pelvic tumors and bone pain and fracture. D’Amico advises that men who wish to avoid metastases should consider monitoring, rather than surgery or radiation, only if their life expectancy is less than a decade. Having cared for many men with prostate cancer that metastasized—an incurable situation often marked by severe suffering—I strongly concur.

SOURCE

http://www.newyorker.com/tech/elements/the-most-notable-medical-findings-of-2016?mbid=nl_TNY%20Template%20-%20With%20Photo%20(122)&CNDID=22119822&spMailingID=10139434&spUserID=MTMzMTc5ODE3NDQwS0&spJobID=1062494562&spReportId=MTA2MjQ5NDU2MgS2

 

REFERENCES

10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer

Freddie C. Hamdy, F.R.C.S.(Urol.), F.Med.Sci., Jenny L. Donovan, Ph.D., F.Med.Sci., J. Athene Lane, Ph.D., Malcolm Mason, M.D., F.R.C.R., Chris Metcalfe, Ph.D., Peter Holding, R.G.N., M.Sc., Michael Davis, M.Sc., Tim J. Peters, Ph.D., F.Med.Sci., Emma L. Turner, Ph.D., Richard M. Martin, Ph.D., Jon Oxley, M.D., F.R.C.Path., Mary Robinson, M.B., B.S., F.R.C.Path., John Staffurth, M.B., B.S., M.D., Eleanor Walsh, M.Sc., Prasad Bollina, M.B., B.S., F.R.C.S.(Urol.), James Catto, Ph.D., F.R.C.S.(Urol.), Andrew Doble, M.S., F.R.C.S.(Urol.), Alan Doherty, F.R.C.S.(Urol.), David Gillatt, M.S., F.R.C.S.(Urol.), Roger Kockelbergh, D.M., F.R.C.S.(Urol.), Howard Kynaston, M.D., F.R.C.S.(Urol.), Alan Paul, M.D., F.R.C.S.(Urol.), Philip Powell, M.D., F.R.C.S., Stephen Prescott, M.D., F.R.C.S.(Urol.), Derek J. Rosario, M.D., F.R.C.S.(Urol.), Edward Rowe, M.D., F.R.C.S.(Urol.), and David E. Neal, F.R.C.S., F.Med.Sci., for the ProtecT Study Group*

N Engl J Med 2016; 375:1415-1424 October 13, 2016 DOI: 10.1056/NEJMoa1606220

 

Treatment or Monitoring for Early Prostate Cancer

Anthony V. D’Amico, M.D., Ph.D.

N Engl J Med 2016; 375:1482-1483 October 13, 2016 DOI: 10.1056/NEJMe1610395

CITING ARTICLES

  1. Matthew R. Cooperberg. . (2016) Re: 10-Year Outcomes After Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. European Urology.
    CrossRef

  2. Jean-Jacques Mazeron. . (2016) Cancer de la prostate : to treat or not to treat ?. Bulletin du Cancer.
    CrossRef

Read Full Post »


Reduction in Mortality in Breast Cancer Patients: Outcome of Drug Interactions

 Reporter: Aviva Lev-Ari, PhD, RN

Drug interactions using gene-expression data: common molecular pathways that might account for drug pairs with apparent synergistic effects, searching for drug-protein interactions in the twoXAR company’s database.
“This is a holistic look at the data — EHR, gene expression, protein targets of drugs — all in one analysis,”

Study reveals drug interactions that may reduce mortality in breast cancer patients

Stanford researchers found that certain drug combinations were associated with lower mortality rates among breast cancer patients, pointing to potential drug targets and new ways of thinking about known diseases.

DEC 9 2016

Nigam Shah

Nigam Shah

Patient health records revealed two drug combinations that may reduce mortality rates in breast cancer patients, according to a study led by researchers at the Stanford University School of Medicine.

The drugs involved were commonly used noncancer drugs that turned out to be associated with a longer average survival rate in breast cancer patients.

The study was published online Dec. 9 in the Journal of the American Medical Informatics Association. The lead author is Stanford postdoctoral scholar Yen Low, PhD. The senior author is Nigam Shah, MBBS, PhD, associate professor of medicine and of biomedical data science.

“So we ran the analysis, and we found a few drug combinations that seemed to associate with better survival,” said Shah.

‘How do we know it’s true?’

Specifically, there were three pairs of drug types. The two combinations in Red are impplicated with improved survivability.

  • anti-inflammatory drugs, such as aspirin or naproxen, and blood-lipid modifiers, such as statins;
  • lipid modifiers and drugs such as fluticasone used to treat asthma like conditions; and
  • anti-inflammatories and anti cancer hormone antagonists — typically, drugs that suppress the synthesis of estrogen.

SOURCE

http://med.stanford.edu/news/all-news/2016/12/study-reveals-drug-interactions-that-may-reduce-mortality.html

Read Full Post »


The Parker Institute in SF – A Collaboration of 6 centers, over 40 labs, and over 300 of the nation’s top researchers, all working together to cure Cancer

Reporter: Aviva Lev-Ari, PhD, RN

 

The Parker Institute an unprecedented collaboration between the country’s leading immunologists and cancer centers:  Memorial Sloan Kettering Cancer Center, Stanford University, University of California, Los Angeles, University of California, San Francisco, the University of Pennsylvania, and the University of Texas MD Anderson Cancer Center

Our network brings together the world’s best. We are 6 centers, over 40 labs, and over 300 of the nation’s top researchers, all working together to cure cancer.

Stanford Cancer Institute funding opportunity webpage: http://med.stanford.edu/cancer/research/funding.html

More information about the Parker Institute for Cancer Immunotherapy can be found at: http://www.parkerici.org

Memorial Sloan Kettering Cancer Center: A world-renowned center for cancer treatment and research, pioneering immunotherapy research since the 19th century.

Stanford Medicine: A world class leader in research and information technologies empowering the development of the next generation of immunotherapies.

University of California, Los Angeles: Renowned for cancer research treatment & prevention.

University of California, San Francisco: A basic-research powerhouse – the genetic drivers of cancer were discovered here – and home to one of the world’s top medical centers.

University of Pennsylvania: One of America’s foremost academic medical centers, and the world leader in T cell-based cancer immunotherapy.

The University of Texas MD Anderson Cancer Center:One of the world’s most respected cancer centers, instrumental in the development of cancer immunotherapy based on checkpoints, blockades.

SOURCE

http://www.parkerici.org/institute/overview

Parker Institute for Cancer Immunotherapy and Cancer Research Institute Launch Collaboration on Cancer Neoantigens

Researchers at 30 organizations to test algorithms that predict tumor markers from DNA in hunt for new personalized cancer treatments

Parker Institute and CRI Launch a Neoantigen Alliance

 

SAN FRANCISCO AND NEW YORK – Dec. 1, 2016 – The Parker Institute for Cancer Immunotherapy and the Cancer Research Institute (CRI) today announced a major collaboration focused on neoantigens. The search for these unique cancer markers has become a robust area of research as scientists believe they may hold the key to developing a new generation of personalized, targeted cancer immunotherapies.

This new collaboration, the Tumor neoantigEn SeLection Alliance (TESLA), includes 30 of the world’s leading cancer neoantigen research groups from both academia and industry. Because these tumor markers are both specific to each individual and unlikely to be present on normal healthy cells, neoantigens represent an optimal target for the immune system and make possible a new class of highly personalized vaccines with the potential for significant efficacy with reduced side effects.

“Bringing together the world’s best neoantigen research organizations to accelerate the discovery of personalized cancer immunotherapies is exactly the type of bold research collaboration that I envisioned when launching the Parker Institute,” said Sean Parker, Silicon Valley entrepreneur and founder of the Parker Institute for Cancer Immunotherapy. “This alliance will not only leverage the immense talents of each of the researchers but will also harness the power of bioinformatics, which I believe will be critical to driving breakthroughs.”

The goal of the initiative is to help participating groups test and continually improve the mathematical algorithms they use to analyze tumor DNA and RNA sequences in order to predict the neoantigens that are likely to be present on each patient’s cancer and most visible to the immune system. In support of this, Parker Institute and CRI have partnered with renowned open science nonprofit, Sage Bionetworks, to manage the bioinformatics and data analysis.

Initially, the project is expected to focus on cancers such as advanced melanoma, colorectal cancer and non-small cell lung cancer that tend to have larger numbers of mutations and thus more neoantigens. Over time, the initiative will seek to broaden the relevance of neoantigen vaccines to a wide range of cancers.

Participants come from universities, biotech, the pharmaceutical industry and scientific nonprofits. The researchers represent a wide swath of scientific fields, including immunology, data science, genomics, molecular biology, and physics and engineering.

“This project embodies the spirit of collaboration and partnership between academia, industry and nonprofits that the Parker Institute strives to foster,” said Jeffrey Bluestone, Ph.D., president and CEO of the Parker Institute for Cancer Immunotherapy. “It is a great example of how we are breaking down traditional barriers to conduct groundbreaking, multidisciplinary science to get cancer treatments to patients faster.”

“The Cancer Research Institute and the Parker Institute share a belief that the immune system is a platform technology that can be harnessed to turn all cancers into a curable disease,” said Adam Kolom, Parker Institute vice president of business development and strategic partnerships and CRI’s Clinical Accelerator program director. “We believe that by bringing together the top laboratories in the world that are developing neoantigen prediction software, we will be able to unlock the promise of this next generation of personalized cancer immunotherapies sooner.”

This marks the first major collaboration between the San Francisco-based Parker Institute for Cancer Immunotherapy, launched in April 2016, and the Cancer Research Institute, founded in 1953 in New York City.

“We’re proud to join the Parker Institute in this collaboration, which demonstrates the vital role that nonprofits can play in bringing together stakeholders from across sectors to work alongside one another to advance the field of cancer immunotherapy,” said Jill O’Donnell-Tormey, Ph.D., Cancer Research Institute CEO and director of scientific affairs.

Participating researchers said they looked forward to working collaboratively through the alliance to solve one of immunotherapy’s most complex problems.

“This experiment is truly remarkable because of its potential to help us more precisely identify abnormal proteins in an individual’s tumor that can be used as targets for personalized cancer immunotherapy,” said professor Robert D. Schreiber, Ph.D., director of the Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs at Washington University School of Medicine in St. Louis. “We believe that this type of precision medicine, used alone or with other forms of immunotherapy, will significantly improve our capacity to treat cancer patients more effectively and with fewer side effects than current treatments.”

About Neoantigens

Neoantigens are markers present on the surface of cancer cells but absent on normal tissue, making them attractive drug target candidates. They commonly arise from mutations that occur as tumor cells rapidly divide and multiply. The immune system can recognize these markers as “foreign,” and as a result, target the cancer cell for destruction. In order to predict which neoantigens will be present on a patient’s tumor, researchers have developed software programs to analyze tumor DNA and output the unique set of markers that the immune system is most likely to recognize.

What the Alliance Will Do

Participating research groups will receive genetic sequences from both normal and cancerous tissues. Using each laboratory’s own algorithms, each group will output a set of predicted neoantigens that are anticipated to be present on the tumor cells and recognizable by the immune system. The predictions will then be validated through a series of tests to assess which predictions are most likely to be correct and recognizable by T-cells. Through this effort, each participant will be provided with data to inform and to further improve their algorithms and therefore the potential effectiveness of personalized neoantigen vaccines for cancer.

Participating Organizations

Currently, the research institutions taking part include the Broad Institute of MIT and Harvard, Caltech, the Dana-Farber Cancer Institute, the La Jolla Institute for Allergy and Immunology, the Ludwig Institute for Cancer Research, Roswell Park Cancer Institute, The Tisch Cancer Institute at the Icahn School of Medicine at Mount Sinai, the University of California, Santa Cruz, The Carole and Ray Neag Comprehensive Cancer Center at UConn Health and Washington University School of Medicine. Internationally, scientists from the Fondazione Network Italiano per la Bioterapia dei Tumori, National Cancer Centre Singapore, the National Center for Tumor Diseases at Heidelberg University Hospital and the Netherlands Cancer Institute have also stepped forward to join the project.

Participants from industry include Advaxis; Agenus; Amgen; BioNTech; Bristol-Myers Squibb; Genentech, a member of the Roche Group; ISA Pharmaceuticals; MedImmune, the global biologics research and development arm of AstraZeneca; Neon Therapeutics and Personalis, Inc.

The six academic research centers that make up the core of the Parker Institute are also expected to participate, including: Memorial Sloan Kettering Cancer Center, Stanford Medicine, the University of California, Los Angeles (UCLA), the University of California, San Francisco, the University of Pennsylvania and The University of Texas MDAnderson Cancer Center. Initial tissue samples are expected to be provided by Memorial Sloan Kettering Cancer Center, National Cancer Centre Singapore, Roswell Park Cancer Institute, UCLA, the University Hospital of Siena in Italy and the John Theurer Cancer Center at Hackensack University Medical Center, a member of Hackensack Meridian Health. As the project progresses, the alliance will add to its growing roster of participants.

About the Parker Institute for Cancer Immunotherapy

The Parker Institute for Cancer Immunotherapy brings together the best scientists, clinicians, and industry partners to build a smarter and more coordinated cancer immunotherapy research effort.

The Parker Institute is an unprecedented collaboration between the country’s leading immunologists and cancer centers: Memorial Sloan Kettering Cancer Center, Stanford Medicine, the University of California, Los Angeles, the University of California, San Francisco, the University of Pennsylvania and The University of Texas MD Anderson Cancer Center. The Parker Institute was created through a $250 million grant from The Parker Foundation.

The Parker Institute’s goal is to accelerate the development of breakthrough immune therapies capable of turning cancer into a curable disease by ensuring the coordination and collaboration of the field’s top researchers, and quickly turning their findings into patient treatments. The Parker Institute network brings together six centers, more than 40 industry and nonprofit partners, more than 63 labs and more than 300 of the nation’s top researchers focused on treating the deadliest cancers.

About the Cancer Research Institute

The Cancer Research Institute (CRI), established in 1953, is the world’s leading nonprofit organization dedicated exclusively to transforming cancer patient care by advancing scientific efforts to develop new and effective immune system-based strategies to prevent, diagnose, treat, and eventually cure all cancers. Guided by a world-renowned Scientific Advisory Council that includes three Nobel laureates and 26 members of the National Academy of Sciences, CRI has invested $336 million in support of research conducted by immunologists and tumor immunologists at the world’s leading medical centers and universities, and has contributed to many of the key scientific advances that demonstrate the potential for immunotherapy to change the face of cancer treatment. To learn more, go to cancerresearch.org.

Contact Information:

Shirley Dang
Science Communications Manager
Parker Institute for Cancer Immunotherapy
sdang@parkerici.org
415-930-4385

Brian Brewer
Director of Marketing and Communications
Cancer Research Institute
bbrewer@cancerresearch.org
212-688-7515 x242

SOURCE

http://www.parkerici.org/media/2016/parker-institute-for-cancer-immunotherapy-cri-neoantigen-alliance

 

Parker Institute for Cancer Immunotherapy (PICI) @ Stanford Medicine Bedside to Bench Grant Program Call for Proposals 

The Parker Institute for Cancer Immunotherapy (PICI) @ Stanford Medicine Bedside to Bench Grant Program supports early stage projects that will enhance interdisciplinary basic and translational research among the Stanford scientific community in Cancer Immunotherapy.

The PICI Bedside to Bench Grant will support collaborations between basic scientists and clinical researchers that lead to fundamental discoveries and advance the field of cancer immunotherapy. These awards are targeted to faculty with early-stage, high-risk ideas that would not be funded by traditional sources.  We are particularly interested in the following areas of study:  

  • T-Cell Therapies,
  • Checkpoint Non-Responders,
  • Antigen Discovery and
  • the Tumor Microenvironment.

All proposals must involve at least one basic science and one clinical investigator.    We encourage applications from scientists across a broad array of disciplines whose combined perspectives will help to accelerate the pace of discovery.

We are particularly interested in proposals that seek to identify correlative biomarkers of response to immunotherapy or that will enable discovery of new targets or pathways that could be leveraged for therapeutic gain using immune based therapies.

SOURCE

http://www.parkerici.org

 

Read Full Post »


p53 mutation – Li-Fraumeni Syndrome – Likelihood of Genetic or Hereditary conditions playing a role in Intergenerational incidence of Cancer

 

Reporter: Aviva Lev-Ari, PhD, RN

 

THIS ARTICLE IS RECOMMENDED READING TO ALL OUR e-Readers

because it is a REAL story of a high school student fighting Brain Cancer, glioblastoma multiforme (GBM)

it presents the FRONTIER OF GENOMICS, PRECISION MEDICINE, Interventional Radiology and Interventional ONCOLOGY at

Stanford University, Canary Center at Stanford for Early Cancer Detection, Stanford Medical Center and Lucile Packard Children’s Hospital

I was exposed to Li-Fraumeni Syndrome in the following article:

‘And yet, you try’ – A father’s quest to save his son

http://stanmed.stanford.edu/2016fall/milan-gambhirs-li-fraumeni-syndrome.html

 

Li-Fraumeni syndrome

Other Names for This Condition

  • LFS
  • Sarcoma family syndrome of Li and Fraumeni
  • Sarcoma, breast, leukemia, and adrenal gland (SBLA) syndrome
  • SBLA syndrome

LFS is a rare disorder that greatly increases the risk of developing several types of cancer, particularly in children and young adults.

The cancers most often associated with Li-Fraumeni syndrome include breast cancer, a form of bone cancer called osteosarcoma, and cancers of soft tissues (such as muscle) called

Soft tissue sarcoma forms in soft tissues of the body, including muscle, tendons, fat, blood vessels, lymph vessels, nerves, and tissue around joints.


(small hormone-producing glands on top of each kidney). Several other types of cancer also occur more frequently in people with Li-Fraumeni syndrome.

A very similar condition called Li-Fraumeni-like syndrome shares many of the features of classic Li-Fraumeni syndrome. Both conditions significantly increase the chances of developing multiple cancers beginning in childhood; however, the pattern of specific cancers seen in affected family members is different.

Genetic Changes

The CHEK2 and TP53 genes are associated with Li-Fraumeni syndrome.

More than half of all families with Li-Fraumeni syndrome have inherited mutations in the gene. TP53 is a tumor suppressor gene, which means that it normally helps control the growth and division of cells. Mutations in this gene can allow cells to divide in an uncontrolled way and form tumors. Other genetic and environmental factors are also likely to affect the risk of cancer in people with TP53 mutations.

A few families with cancers characteristic of Li-Fraumeni syndrome and Li-Fraumeni-like syndrome do not have TP53 mutations, but have mutations in the CHEK2 gene. Like the TP53 gene, CHEK2 is a tumor suppressor gene. Researchers are uncertain whether CHEK2 mutations actually cause these conditions or are merely associated with an increased risk of certain cancers (including breast cancer).

Inheritance Pattern

Li-Fraumeni syndrome is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to increase the risk of developing cancer. In most cases, an affected person has a parent and other family members with cancers characteristic of the condition.

Diagnosis and Management

These resources address the diagnosis or management of Li-Fraumeni syndrome:

References on LFS

SOURCE

https://ghr.nlm.nih.gov/condition/li-fraumeni-syndrome

Read Full Post »

Older Posts »