View on Amazon.com
https://www.amazon.com/dp/B0BRJT9SS9
since 1/1/2023
Audio y Texto
- NEW GENRE Volume Two: Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders
- Original Volume Two: Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders
On Amazon.com since12/9/2017
https://www.amazon.com/dp/B078313281
-
NEW GENRE Volume Two: Medical Scientific Discoveries for the 21st Century & Interviews with Scientific Leaders
This volume has the following three parts:
PART A: The eTOCs in Spanish in Audio format
PART B: The eTOCs in Bi-lingual format: Spanish and English in Text format
PART C: The Editorials of the original e-Books in English in Audio format
PART A:
The eTOCs in Spanish in Audio format
Serie E: Medicina centrada en el paciente
Asesor de contenidos de la serie: Larry H. Bernstein, MD, FCAP
Descubrimientos científicos médicos para el siglo XXI
y
Entrevistas con líderes científicos
2017
Traducción a español
Disponible en Amazon.com desde el 09/12/2017
https://www.amazon.com/dp/B078313281
Autor, redactor y editor
Director científico
Leaders in Pharmaceutical Business Intelligence
Fuente de la imagen: Cortesía de Shutterstock
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
Lista de colaboradores y sus biografías
Autor del volumen, redactor y editor
Prefacio, todas las introducciones, todos los resúmenes y el epílogo
Primera parte:
1.4, 1.5, 1.6, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3, 2.4, 2.4.1, 2.4.2, 2.5, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.7, 2.8, 2.9, 2.10, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3
Segunda parte:
5.2, 5.3, 5.6, 6.1.2, 6.1.4, 6.2.1, 6.2.2, 6.3.2, 6.3.4, 6.3.5, 6.3.6, 6.3.8, 6.3.10, 6.4.1, 6.4.2, 6.5.1.2, 6.5.1.3, 6.5.2.2, 7.1, 7.2, 7.3, 7.4, 7.5, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.9.1, 8.9.3, 8.9.4, 8.9.5, 8.9.6, 8.10.1, 8.10.2, 8.10.3, 8.10.4, 9.2, 9.3, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 10.2, 10.5, 10.6, 10.7, 10.8, 10.10, 10.11, 11.1, 11.2, 11.3, 11.5, 11.6, 11.7, 12.1, 12.2, 12.3, 12.4, 12.5, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12, 13.1, 13.2, 13.3, 13.6, 13.12, 13.13, 14.1, 14.2
Autores invitados:
Segunda parte: 6.1.1
Segunda parte: 6.2.6, 6.5.2, 6.5.2.2, 10.4, 10.9, 13.4
Primera parte:
1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.2.1, 2.3
Segunda parte:
5.1, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11, 6.1.3, 6.2.3, 6.2.4, 6.2.5, 6.3.1, 6.3.3, 6.3.7, 6.3.9, 6.4.3, 6.5.1.1, 6.5.2, 6.5.2.1, 6.5.2.2, 6.5.3.1, 6.5.4, 6.5.5, 6,5,6, 8.9.2, 8.10.2, 9.1, 9.4, 10.1, 10.3, 11.4, 12.6, 13.5, 13.7, 13.8, 13.9, 13.10, 13.11
Adam Sonnenberg, BSC, MSc(c) En 2021: PhD, estudiante de medicina de 2.º año
Segunda parte: 13.9
Los enlaces indicados llevan al contenido original en inglés
MD |
Licenciado/a en medicina y cirugía (Estados Unidos) |
PhD |
Doctorado/a |
RN |
Enfermero/a titulado/a (National Board of Nursing Registration) |
FCAP |
Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos |
CT |
Tomografía computarizada (TC) |
BWH |
Brigham and Women’s Hospital |
MRC |
Medical Research Council (Consejo de Investigaciones Científicas del Reino Unido) |
DNA |
ADN |
AV |
Auriculoventricular |
FISH |
Hibridación in situ con fluorescencia |
RNAi |
Interferencia de ARN |
RXR |
Receptor X de los retinoides |
NIH |
National Institutes of Health (Institutos Nacionales de Salud de los Estados Unidos) |
FDA |
Food and Drug Administration (Administración de Alimentos y Medicamentos de los Estados Unidos) |
Indice de contenidos electrónico (IDCe)
PRIMERA PARTE
Los médicos como autores, escritores sobre medicina y
formadores en salud pública
Capítulo 1: Los médicos como autores
Introducción
1.1 El joven cirujano y el anatomopatólogo jubilado: sobre ciencia, medicina y política sanitaria. Los mejores escritores entre los escritores
1.2 Atul Gawande: médico y escritor
https://pharmaceuticalintelligence.com/2015/10/18/32809/
1.3 Edición y publicación de artículos en libros electrónicos por Leaders in Pharmaceutical Business Intelligence: aportaciones de Larry H. Bernstein, MD, FCAP
1.4 Abraham Verghese, MD, médico y autor destacado
1.5 Eric Topol, MD
https://pharmaceuticalintelligence.com/2015/09/22/eric-topol-m-d/
1.6 Gregory House, MD
https://pharmaceuticalintelligence.com/2015/09/22/house-md/
1.7 Peter Mueller, MD, Profesor de Radiología en MGH & HMS: galardonado con el Premio Honorífico de Synergy 2015
Resumen
Capítulo 2: Reconocimiento profesional
Introducción
2.1 Actas
2.1.1 Presentaciones de la investigación
https://pharmaceuticalintelligence.com/2015/10/04/research-presentations/
2.1.2 Actas de la NYAS
https://pharmaceuticalintelligence.com/2015/09/25/proceedings-of-the-nyas/
2.1.3 Reuniones de la Conferencia de Cold Spring Harbor
https://pharmaceuticalintelligence.com/2015/10/02/cold-spring-harbor-conference-meetings/
2.1.4 Seminarios para jóvenes científicos
https://pharmaceuticalintelligence.com/2015/10/13/young-scientist-seminars/
2.2 Conozca a las grandes mentes
2.2.1 Conozca a los galardonados
https://pharmaceuticalintelligence.com/2015/10/01/meet-great-minds/
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
2.2.2 Richard Feynman, genio y laureado
https://pharmaceuticalintelligence.com/2015/10/01/richard-feynman-genius-and-laureate/
2.2.3 Fractales y energía térmica
https://pharmaceuticalintelligence.com/2015/10/02/fractals-and-heat-energy/
2.3 Premios de la Fundación MacArthur
https://pharmaceuticalintelligence.com/2015/09/30/macarthur-genius-awards/
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
2.4 La contribución de las mujeres fue más allá de Rosie la Remachadora
2.4.1 Una operación secreta de la China maoísta conquistó la malaria
2.4.2 Los desarrolladores de fármacos antiparasitarios ganan el Premio Nobel
https://pharmaceuticalintelligence.com/2015/10/09/antiparasite-drug-developers-win-nobel/
2.5 Factores de impacto y logros
https://pharmaceuticalintelligence.com/2015/10/03/impact-factors-and-achievement/
2.6 Medicina RAPsódica: radiólogos, anestesistas y patólogos
2.6.1 Logros destacados en radiología o radioterapia
2.6.2 Logros destacados en anestesiología
https://pharmaceuticalintelligence.com/2015/09/26/outstanding-achievement-in-anesthesiology/
2.6.3 Logros destacados en anatomopatología
https://pharmaceuticalintelligence.com/2015/09/26/outstanding-achievement-in-pathology/
2.6.4 Temas de anatomopatología: ediciones especiales de Medscape Pathology
https://pharmaceuticalintelligence.com/2015/10/01/topics-in-pathology/
2.7 Cómo ganar el Premio Nobel
https://pharmaceuticalintelligence.com/2015/10/09/how-to-win-the-nobel-prize/
2.8 Conversaciones sobre medicina
https://pharmaceuticalintelligence.com/2015/10/14/conversations-about-medicine/
2.9 Avances actuales de la tecnología médica
https://pharmaceuticalintelligence.com/2015/10/13/current-advances-in-medical-technology/
2.10 Atul Butte, MD, PhD
https://pharmaceuticalintelligence.com/2015/10/17/atul-butte/
Resumen
Capítulo 3: Educación en Ciencias Médicas y de la Salud
Introducción
3.1 Ganadores del Premio Nacional al Estudiante de Medicina Sobresaliente
https://pharmaceuticalintelligence.com/2015/09/25/national-outstanding-medical-student-award-winners
3.2 Premios destacados en educación médica
https://pharmaceuticalintelligence.com/2015/09/25/outstanding-awards-in-medical-education/
3.3 Promover la excelencia entre profesionales de la medicina y la enfermería
https://pharmaceuticalintelligence.com/2015/09/26/promoting-excellence-in-physicians-and-nurses/
3.4 Excelencia en la orientación académica
https://pharmaceuticalintelligence.com/2015/10/02/excellence-in-mentoring/
Resumen
Capítulo 4: Enseñanza de las Ciencias en Matemáticas y Tecnología (STEM)
Introducción
4.1 Enseñanza de las Ciencias en Matemáticas y Tecnología
https://pharmaceuticalintelligence.com/2015/09/25/science-teaching-in-math-and-technology/
4.2 La televisión como medio de enseñanza de las ciencias
4.2.1 Science Discovery TV
https://pharmaceuticalintelligence.com/2015/09/26/science-discovery-tv/
4.3 De Turing a Watson
https://pharmaceuticalintelligence.com/2015/10/02/from-turing-to-watson/
Resumen
SEGUNDA PARTE
Descubrimientos científicos médicos
y
Entrevistas con líderes científicos
Capítulo 5: Sistema cardiovascular
Introducción
5.1 El Profesor Lichtstein, fisiólogo y Catedrático de Estudios Cardíacos de la Universidad Hebrea, elegido Decano de la Facultad de Medicina de la Universidad Hebrea de Jerusalén
5.2 Disfunción mitocondrial y trastornos cardíacos
https://pharmaceuticalintelligence.com/2013/04/14/mitochondrial-dysfunction-and-cardiac-disorders/
5.3 Contribuciones notables a la cardiología regenerativa
https://pharmaceuticalintelligence.com/2013/10/20/notable-contributions-to-regenerative-cardiology/
5.4 Por sus logros en cardiología y enfermedades cardiovasculares: Premio Internacional de Investigación Científica Arrigo Recordati
5.5 Convertirse en cirujano cardiotorácico: un perfil emergente en el quirófano y a través de las publicaciones científicas
5.6 Diagnóstico y biomarcadores: nuevas tendencias de la industria de la genómica frente a las condiciones actuales del mercado y un nuevo programa informático de soporte clínico por expertos en tiempo real, Historical Scientific Leaders Memoirs
5.7 Prevención de la ECV y evaluación de las modalidades de formación de imágenes cardiovasculares: puntuación de calcio coronario mediante exploración por TC para justificar o no el uso de estatinas
5.8 2013, el año que revolucionó la medicina y las 11 mejores historias de la cardiología
5.9 Reduciendo la brecha en las innovaciones médicas: Elazer Edelman en TEDMED 2013
5.10 Desarrollo de un stent pancreatobiliar liberador de quimioterapia para el adenocarcinoma ductal pancreático. Investigadores principales: Jeffrey Clark (MGH), Robert Langer (Koch), Elazer Edelman (programa HST de Harvard:MIT)
5.11 Publicaciones sobre la insuficiencia cardíaca del profesor William Gregory Stevenson, M.D., BWH
Resumen
Capítulo 6: Genómica
Introducción
6.1 La genética antes del Proyecto Genoma Humano
6.1.1 ¿Por qué Pauling perdió la «carrera» contra James Watson y Francis Crick? Así describió Crick su descubrimiento en una carta a su hijo
6.1.2 La Unidad de Investigación del MRC de John Randall y el papel de Rosalind Franklin en el Kings College
6.1.3 Entrevista con el codescubridor de la estructura del ADN: Watson sobre su libro «La doble hélice» y su cambio de opinión sobre Rosalind Franklin
6.1.4 El inicio y el desarrollo de la biología molecular y la genómica – Parte I
6.2 El Proyecto Genoma Humano: artículos de interés en pharmaceuticalintelligence.com por varios autores
6.2.1 DESCIFRANDO EL CÓDIGO DE LA VIDA HUMANA: el nacimiento de la bioinformática y la genómica computacional
6.2.2 Ya se ha secuenciado la secuencia eucromática del genoma humano. ¿Qué viene a continuación?
6.2.3 Décimo aniversario del Proyecto Genoma Humano: entrevista con Kevin Davies, PhD – El genoma de los 1000 dólares
6.2.4 El Instituto de Genómica de la Universidad de California en Santa Cruz creará un mapa de las variaciones genéticas humanas
6.2.5 Genomas excepcionales: el proceso para encontrarlos
https://pharmaceuticalintelligence.com/2014/11/19/exceptional-genomes-the-process-to-find-them/
6.2.6 Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico
6.3 El impacto de la secuenciación del genoma en la biología y la medicina
6.3.1 La genómica en la medicina: una visión de los datos genómicos centrada en el paciente
6.3.2 Modificación de genes por recombinación de homólogos: Mario Capecchi, Martin Evans, Oliver Smithies
https://pharmaceuticalintelligence.com/2015/09/05/modification-of-genes-by-homologous-recombination/
6.3.3 AAAS 14-18 de febrero de 2013, Boston: Simposio sobre la ciencia de la incertidumbre en la medicina genómica
6.3.4 La perspectiva metabólica de la expresión epigenética
https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/
6.3.5 La farmacogenómica
https://pharmaceuticalintelligence.com/2015/01/31/pharmacogenomics/
6.3.6 Fisiopatología neonatal
https://pharmaceuticalintelligence.com/2015/02/22/neonatal-pathophysiology/
6.3.7 Genética de las enfermedades de la conducción: enfermedad (bloqueo) de la conducción auriculoventricular (AV). Mutaciones genéticas: transcripción, excitabilidad y homeostasis energética
6.3.8 Cartografía en 3D del genoma en combinación con FISH e iARN
https://pharmaceuticalintelligence.com/2015/10/01/3d-mapping-of-genome-in-combine-fish-and-rnai/
6.3.9 Proyecto Varioma Humano: catálogo enciclopédico de variantes de secuencias indexadas según la secuencia del genoma humano
6.3.10 Mutagénesis del ADN y reparación del ADN
https://pharmaceuticalintelligence.com/2015/09/05/dna-mutagenesis-and-dna-repair/
6.4 Reconocimiento al liderazgo científico por su contribución a la genómica
6.4.1 Entrevista con Elizabeth H. Blackburn, Carol W. Greider y Jack W. Szostak (44 minutos)
http://www.nobelprize.org/mediaplayer/index.php?id=1227
6.4.2 Pioneros de la reparación del ADN ganan el Nobel: Tomas Lindahl, Paul Modrich y Aziz Sancar, Premio Nobel de Química 2015 por los mecanismos de reparación del ADN
https://pharmaceuticalintelligence.com/2015/10/09/dna-repair-pioneers-win-nobel/
6.4.3 Dr. Richard Lifton, doctorado por la Universidad de Yale y el Instituto Médico Howard Hughes: galardonado en los Premios Breakthrough 2014 en Ciencias de la Vida por el descubrimiento de los genes y mecanismos bioquímicos que causan la hipertensión
6.5 Líderes actuales del campo de la genómica
6.5.1 ROBERT LANGER
6.5.1.1 2014 Premios Breakthrough concedidos en Física Fundamental y Ciencias de la Vida con una dotación de 21 millones de dólares: Robert Langer del MIT recibe 3 millones de dólares
6.5.1.2 Medalla Nacional de la Ciencia de 2006: Robert S. Langer
https://pharmaceuticalintelligence.com/2015/09/21/national-medal-of-science/
6.5.1.3 Confluencia de la química, la física y la biología
https://pharmaceuticalintelligence.com/2015/09/24/confluence-of-chemistry-physics-and-biology/
6.5.2 JENNIFER DOUDNA. Premio Nobel de Química 2020: Emmanuelle Charpentier y Jennifer A. Doudna
Reporteros: Stephen J Williams, PhD y Aviva Lev-Ari, PhD, RN
6.5.2.1 Jennifer Doudna y los equipos de cosmología, ganadores del Premio Breakthrough 2015
6.5.2.2 ACTUALIZACIÓN. Interpretación médica de la frontera genómica: el CRISPR/Cas9: la tecnología de edición genética para nuevas terapias
Autores y redactores: Larry H Bernstein, MD, FCAP, Stephen J Williams, PhD y Aviva Lev-Ari, PhD, RN
6.5.3 ERIC LANDER
6.5.3.1 Entrega del Premio Harvey el 30 de abril de 2012: en el Technion-Israel Institute of Technology, a Eric S. Lander del MIT y Eli Yablonovitch de la UC, Berkeley
6.5.4 La genómica en 2013. La era más allá de la secuenciación del genoma humano: Francis Collins, Craig Venter, Eric Lander y otros
6.5.5 Reconocimientos a las contribuciones en genómica por los premios Dan David
6.5.6 65 laureados con el Premio Nobel se reúnen con 650 jóvenes científicos en los campos de la fisiología y la medicina, la física y la química, del 28 de junio al 3 de julio de 2015, en Lindau y la isla de Mainau, Alemania
Resumen
Capítulo 7: Los ARN
Introducción
7.1 La ARN-polimerasa: base molecular de la transcripción del ADN. Roger Kornberg, MD
7.2 Un gen, una proteína. Charles Yanofsky
https://pharmaceuticalintelligence.com/2015/09/05/one-gene-one-protein/
7.3 Convirtiendo la información genética en proteínas funcionales. James E. Darnell Jr.
https://pharmaceuticalintelligence.com/2015/09/05/turning-genetic-information-into-working-proteins/
7.4 ARN pequeños pero poderosos. Victor Ambros, David Baulcombe y Gary Ruvkun, Phillip A. Sharp
https://pharmaceuticalintelligence.com/2015/09/05/small-but-mighty-rnas/
7.5 Redes de genes de respuesta al estrés, Nina V. Fedoroff
https://pharmaceuticalintelligence.com/2015/09/05/stress-response-gene-networks/
Resumen
Capítulo 8: Proteómica, plegado de proteínas y regulación celular
Introducción
8.1 La vida y obra de Allan Wilson
https://pharmaceuticalintelligence.com/2015/01/20/the-life-and-work-of-allan-wilson/
8.2 Proteómica
https://pharmaceuticalintelligence.com/2015/01/31/proteomics/
8.3 Más complejidad en la evolución de las proteínas
https://pharmaceuticalintelligence.com/2015/01/18/more-complexity-in-protein-evolution/
8.4 Proteínas: un registro evolutivo de la diversidad y la adaptación
8.5 Héroes de la investigación médica básica. Leroy Hood
https://pharmaceuticalintelligence.com/2015/09/06/heroes-in-basic-medical-research-leroy-hood/
8.6 Los investigadores de la ubiquitina ganan el Premio Nobel. Ciechanover, Hershko y Rose premiados por el descubrimiento de la proteólisis mediada por la ubiquitina
https://pharmaceuticalintelligence.com/2015/09/05/ubiquitin-researchers-win-nobel/
8.7 La amortiguación de los módulos genéticos implicados en el metabolismo del ciclo de los ácidos tricarboxílicos proporciona regulación homeostática
8.8 Perfiles dinámicos de proteínas
https://pharmaceuticalintelligence.com/2015/10/02/dynamic-protein-profiling/
8.9 Plegado de proteínas
https://pharmaceuticalintelligence.com/2015/09/09/protein-folding/
Introducción al mal plegamiento de las proteínas
8.9.1 Mal plegamiento de las proteínas y priones. Susan L. Lindquist, Stanley B. Prusiner
https://pharmaceuticalintelligence.com/2015/09/11/protein-misfolding-and-prions-3/
8.9.2 Censo seleccionado de las proteínas moduladoras de la autofagia y las moléculas pequeñas que son posibles dianas para el tratamiento del cáncer
8.9.3 Insuficiencia de S voluntaria e involuntaria
https://pharmaceuticalintelligence.com/2015/03/07/transthyretin-and-the-stressful-condition/
8.9.4 Transtiretina y masa corporal magra en estado estable y de estrés
8.9.5 La cuestión del retraso del crecimiento en las llanuras del Ganges
https://pharmaceuticalintelligence.com/2015/10/15/the-matter-of-stunting-in-the-ganges-plains/
8.9.6 Proteínas, formación de imágenes y agentes terapéuticos
https://pharmaceuticalintelligence.com/2015/10/01/proteins-imaging-and-therapeutics/
Resumen
8.10 Plegado de proteínas y carga de las vesículas
8.10.1 Proteínas de choque térmico (HSP) y chaperonas moleculares
https://pharmaceuticalintelligence.com/2016/04/13/heat-shock-proteins-and-molecular-chaperones/
8.10.2 Chaperona molecular de unión al colágeno HSP47: su papel en la fibrosis intestinal. Las células epiteliales colónicas y los miofibroblastos subepiteliales
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
8.10.3 Biología, fisiología y fisiopatología de las proteínas de choque térmico
8.10.4 El papel de los exosomas en la regulación metabólica
https://pharmaceuticalintelligence.com/2017/10/08/the-role-of-exosomes-in-metabolic-regulation/
Capítulo 9: Neurociencia
Introducción
9.1 Premio Nobel de Fisiología o Medicina 2013 por el transporte celular: James E. Rothman de la Universidad de Yale; Randy W. Schekman de la Universidad de California, Berkeley; y el Dr. Thomas C. Südhof de la Universidad de Stanford
9.2 Proteínas que controlan la liberación de neurotransmisores. Richard H. Scheller
https://pharmaceuticalintelligence.com/2015/09/06/proteins-that-control-neurotransmitter-release/
9.3 Héroes de la investigación médica básica. Robert J. Lefkowitz
9.4 LA MENTE Y LA MEMORIA: BIOLÓGICA Y DIGITAL. Simposio del Premio Dan David 2014
9.5 Una nueva forma de moverse, Michael Sheetz, James Spudich, Ronald Vale
9.6 Función de los núcleos basales
https://pharmaceuticalintelligence.com/2015/09/06/role-of-the-basal-ganglia/
9.7 La neurogenética del lenguaje: Patricia Kuhl, Premio George A. Miller 2015
https://pharmaceuticalintelligence.com/2015/09/06/the-neurogenetics-of-language-patricia-kuhl/
9.8 La estructura de nuestro sistema visual
9.9 Logros destacados en la investigación de la esquizofrenia
https://pharmaceuticalintelligence.com/2015/09/06/outstanding-achievement-in-schizophrenia-
9.10 Fallece a los 92 años George A. Miller, pionero de la psicología cognitiva
9.11 Entender qué ocurre en el cerebro que causa las enfermedades mentales
9.12 Cerebro y cognición
https://pharmaceuticalintelligence.com/2015/10/14/brain-and-cognition/
9.13 Reducir los síntomas de las enfermedades mentales y reeducar el cerebro
9.14 Comportamiento
https://pharmaceuticalintelligence.com/2015/09/10/behavior/
9.15 Artículos notables sobre neurociencias
https://pharmaceuticalintelligence.com/2015/10/09/notable-papers-in-neurosciences/
9.16 Pirroloquinolina quinona (PQQ): un suplemento no probado
Resumen
Capítulo 10: Microbiología e Inmunología
Introducción
10.1 Genes de referencia en el microbioma intestinal humano: el catálogo de BGI
10.2 Desnutrición en la India, alta tasa de mortalidad neonatal y retraso en el crecimiento de los niños menores de cinco años
10.3 En sus propias palabras: fallece a los 81 años Leonard Herzenberg, el inmunólogo que revolucionó la investigación
10.4 Héroes de la investigación médica: el Dr. Robert Ting y los retrovirus en el SIDA y el cáncer
10.5 Premio Tang de 2014: inmunidad y cáncer
https://pharmaceuticalintelligence.com/2014/06/20/tang-prize-for-2014-immunity-and-cancer/
10.6 Modelo halstediano de la progresión del cáncer
https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/
10.7 La historia de la hematología y las ciencias afines
https://pharmaceuticalintelligence.com/2014/12/05/the-history-of-hematology-and-related-sciences/
10.8 La emergencia de la anatomía patológica en el siglo XXI
https://pharmaceuticalintelligence.com/2014/08/03/pathology-emergence-in-the-21st-century/
10.9 Héroes de la investigación médica: Barnett Rosenberg y el descubrimiento del cisplatino
10.10 Respuestas inmunitarias mediadas por los linfocitos T y vías de señalización activadas por los TLR. Bruce A. Beutler, Jules A. Hoffmann, Ralph M. Steinman
10.11 Roeder: el coactivador OCA-B, el primer coactivador específico de las células, descubierto por Roeder en 1992, es exclusivo de los linfocitos B del sistema inmunitario
Resumen
Capítulo 11: Hormonas endocrinas
Introducción
11.1 Obesidad, 2010. Douglas L. Coleman, Jeffrey M. Friedman
https://pharmaceuticalintelligence.com/2015/09/07/obesity/
11.2 Receptores solitarios: RXR. Jensen, Chambon y Evans. Los receptores nucleares provocan la producción de ARN en respuesta a las hormonas esteroideas
https://pharmaceuticalintelligence.com/2015/09/07/lonely-receptors-rxr-jensen-chambon-and-evans/
11.3 El premio Fred Conrad Koch a la trayectoria profesional, el más alto honor de la Endocrine Society, reconoce los logros de toda una vida y las contribuciones excepcionales de una persona al campo de la endocrinología
11.4 Premio Gerald D Aurbach a la investigación aplicable sobresaliente
11.5 Premio Roy O. Greep a la Investigación destacada en endocrinología. Martin M. Matzuk
11.6 Premios de la Sociedad Americana de Fisiología
https://pharmaceuticalintelligence.com/2015/09/09/american-society-of-physiology-awards/
11.7 Solomon Berson y Rosalyn Yalow
https://pharmaceuticalintelligence.com/2015/09/07/solomon-berson-and-rosalyn-yalow/
Resumen
Capítulo 12: Células madre
Introducción
12.1 Las células maduras pueden reprogramarse para convertirse en pluripotentes. John Gurdon y Shinya Yamanaka
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/advanced-medicineprize2012.pdf
12.2 Observación de las colonias de bazo en ratones y comprobación de la existencia de las células madre. Till y McCulloch
12.3 Premio McEwen a la innovación: Irving Weissman, M.D., Escuela de Medicina de Stanford, y Hans Clevers, M.D., Ph.D., Instituto Hubrecht
12.4 Biología del desarrollo
https://pharmaceuticalintelligence.com/2015/09/08/developmental-biology/
12.5 Ingeniería genómica mediada por CRISPR/Cas. Rudolf Jaenisch
https://pharmaceuticalintelligence.com/2015/09/08/crisprcas-mediated-genome-engineering/
12.6 Ribozimas y máquinas de ARN. El trabajo de Jennifer A. Doudna
12.7 Ralph Brinster, el «padre de la transgénesis»
https://pharmaceuticalintelligence.com/2015/09/08/ralph-brinster-father-of-transgenesis/
12.8 Modificación genética dirigida
https://pharmaceuticalintelligence.com/2015/09/08/targeted-gene-modification/
12.9 Células madre y cáncer
https://pharmaceuticalintelligence.com/2015/09/10/stem-cells-and-cancer/
12.10 Premios ALPSP
https://pharmaceuticalintelligence.com/2015/09/10/apls-awards/
12.11 Premio Eppendorf para jóvenes investigadores europeos
https://pharmaceuticalintelligence.com/2015/09/18/eppendorf-award-for-young-european-investigators/
12.12 Noticias de última hora sobre la ingeniería genómica, la DMT2 y los tratamientos antineoplásicos
Resumen
Capítulo 13: Impresión 3D y aplicación médica
Introducción
13.1 Impresión en 3D
https://pharmaceuticalintelligence.com/2015/09/10/3-d-printing/
13.2 ¿Qué es la impresión 3D?
https://pharmaceuticalintelligence.com/2015/09/10/what-is-3-d-printing/
13.3 El científico que está haciendo que la impresión 3D sea más humana
13.4 Únase a estos grupos de impresión médica en 3D en Twitter y LinkedIn para conocer las últimas novedades
13.5 Neri Oxman y su grupo, Mediated Matter del MIT Media Lab, han desarrollado una técnica para imprimir en 3D vidrio fundido
13.6 El «chemputer» que podría imprimir cualquier fármaco
https://pharmaceuticalintelligence.com/2015/09/10/drug-chemputer/
13.7 Uso de la bioimpresión en 3D para crear tejido vivo cardíaco: imprime tu corazón
13.8 Perspectiva de LPBI sobre las aplicaciones médicas y de ciencias de la vida. La impresión en 3D: tintas biológicas, biomateriales y biopolímeros
13.9 MEMS médicos, sensores e impresión en 3D: frontera en el control del proceso de los biomateriales
Aviva Lev-Ari, PhD, RN y Adam Sonnenberg, BSC, MSc(c) en 2021: PhD, estudiante de medicina de 2.º año
13.10 Los NIH y la FDA sobre la impresión en 3D para aplicaciones médicas: puntos de vista sobre la impresión de fármacos a la carta, reparación directa de tejidos in situ y órganos impresos para implantes vivos
13.11 La técnica de fabricación «pop-up» supera a la impresión en 3D
https://pharmaceuticalintelligence.com/2015/01/14/pop-up-fabrication-technique-trumps-3d-printing/
13.12 Potenciación de la ONTOLOGÍA de la investigación sobre la impresión en 3D
13.13 Microscopía de superresolución
https://pharmaceuticalintelligence.com/2015/10/14/superresolution-microscopy/
Resumen
Capítulo 14: Química medicinal sintética
Introducción
14.1 Perspectivas de la química medicinal biológica y sintética
14.2 Trabajos pioneros en el ámbito del cáncer
https://pharmaceuticalintelligence.com/2015/10/01/breakthrough-work-in-cancer/
Resumen de la segunda parte
Resumen del volumen y conclusiones
EPÍLOGO
SEGUNDO VOLUMEN
Descubrimientos científicos médicos para el siglo XXI
y
entrevistas con líderes científicos
Autor, redactor y editor:
Medical Scientific Discoveries for the
21st Century
&
Interviews with Scientific Leaders
Disponible en Amazon.com desde el 09/12/2017
https://www.amazon.com/dp/B078313281
PART B:
The eTOCs in Bi-lingual format: Spanish and English in Text format
Serie E: Medicina centrada en el paciente
Asesor de contenidos de la serie: Larry H. Bernstein, MD, FCAP
Descubrimientos científicos médicos para el siglo XXI
y
Entrevistas con líderes científicos
2017
Traducción a español
Disponible en Amazon.com desde el 09/12/2017
https://www.amazon.com/dp/B078313281
Autor, redactor y editor
Larry H Bernstein, MD, FCAP
Director científico
Leaders in Pharmaceutical Business Intelligence
Fuente de la imagen: Cortesía de Shutterstock
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
Series E: Patient-Centered Medicine
Series Content Consultant: Larry H Bernstein, MD, FCAP
Medical Scientific Discoveries for the 21st Century
&
Interviews with Scientific Leaders
2017
Available on Amazon.com since December 9, 2017
https://www.amazon.com/dp/B078313281
Author, Curator and Editor
Larry H Bernstein, MD, FCAP
Chief Scientific Officer
Leaders in Pharmaceutical Business Intelligence
Image Source: Courtesy of Shutterstock
Aviva Lev-Ari, PhD, RN
Editor-in-Chief BioMed e-Series of e-Books
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
Lista de colaboradores y sus biografías
List of Contributors & Contributors’ Biographies
Autor del volumen, redactor y editor
Volume Author, Curator and Editor
Larry H Bernstein, MD, FCAP
Prefacio, todas las introducciones, todos los resúmenes y el epílogo
Preface, all Introductions, all Summaries and Epilogue
Primera parte:
Part One:
1.4, 1.5, 1.6, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3, 2.4, 2.4.1, 2.4.2, 2.5, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.7, 2.8, 2.9, 2.10, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3
Segunda parte:
Part Two:
5.2, 5.3, 5.6, 6.1.2, 6.1.4, 6.2.1, 6.2.2, 6.3.2, 6.3.4, 6.3.5, 6.3.6, 6.3.8, 6.3.10, 6.4.1, 6.4.2, 6.5.1.2, 6.5.1.3, 6.5.2.2, 7.1, 7.2, 7.3, 7.4, 7.5, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.9.1, 8.9.3, 8.9.4, 8.9.5, 8.9.6, 8.10.1, 8.10.2, 8.10.3, 8.10.4, 9.2, 9.3, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 10.2, 10.5, 10.6, 10.7, 10.8, 10.10, 10.11, 11.1, 11.2, 11.3, 11.5, 11.6, 11.7, 12.1, 12.2, 12.3, 12.4, 12.5, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12, 13.1, 13.2, 13.3, 13.6, 13.12, 13.13, 14.1, 14.2
Autores invitados:
Guest Authors:
Segunda parte: 6.1.1
Part Two: 6.1.1
Segunda parte: 6.2.6, 6.5.2, 6.5.2.2, 10.4, 10.9, 13.4
Part Two: 6.2.6, 6.5.2, 6.5.2.2, 10.4, 10.9, 13.4
Primera parte:
Part One:
1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.2.1, 2.3
Segunda parte:
Part Two:
5.1, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11, 6.1.3, 6.2.3, 6.2.4, 6.2.5, 6.3.1, 6.3.3, 6.3.7, 6.3.9, 6.4.3, 6.5.1.1, 6.5.2, 6.5.2.1, 6.5.2.2, 6.5.3.1, 6.5.4, 6.5.5, 6,5,6, 8.9.2, 8.10.2, 9.1, 9.4, 10.1, 10.3, 11.4, 12.6, 13.5, 13.7, 13.8, 13.9, 13.10, 13.11
Adam Sonnenberg, BSC, MSc(c) En 2021: PhD, estudiante de medicina de 2.º año
Adam Sonnenberg, BSC, MSc(c) In 2021: PhD, Medical Student 2nd year
Segunda parte: 13.9
Part Two: 13.9
Los enlaces indicados llevan al contenido original en inglés
MD |
Licenciado/a en medicina y cirugía (Estados Unidos) |
PhD |
Doctorado/a |
RN |
Enfermero/a titulado/a (National Board of Nursing Registration) |
FCAP |
Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos |
CT |
Tomografía computarizada (TC) |
BWH |
Brigham and Women’s Hospital |
MRC |
Medical Research Council (Consejo de Investigaciones Científicas del Reino Unido) |
DNA |
ADN |
AV |
Auriculoventricular |
FISH |
Hibridación in situ con fluorescencia |
RNAi |
Interferencia de ARN |
RXR |
Receptor X de los retinoides |
NIH |
National Institutes of Health (Institutos Nacionales de Salud de los Estados Unidos) |
FDA |
Food and Drug Administration (Administración de Alimentos y Medicamentos de los Estados Unidos) |
Indice de contenidos electrónico (IDCe)
electronic Table of Contents
PRIMERA PARTE
Los médicos como autores, escritores sobre medicina y
formadores en salud pública
PART ONE
Physician as Authors, Writers in Medicine and
Educator in Public Health
Capítulo 1: Los médicos como autores
Chapter 1: Physicians as Authors
Introducción
Introduction
1.1 El joven cirujano y el anatomopatólogo jubilado: sobre ciencia, medicina y política sanitaria. Los mejores escritores entre los escritores
1.1 The Young Surgeon and The Retired Pathologist: On Science, Medicine and HealthCare Policy – Best writers Among the WRITERS
1.2 Atul Gawande: médico y escritor
1.2 Atul Gawande: Physician and Writer
https://pharmaceuticalintelligence.com/2015/10/18/32809/
1.3 Edición y publicación de artículos en libros electrónicos por Leaders in Pharmaceutical Business Intelligence: aportaciones de Larry H. Bernstein, MD, FCAP
1.3 Editorial & Publication of Articles in e-Books by Leaders in Pharmaceutical Business Intelligence: Contributions of Larry H Bernstein, MD, FCAP
1.4 Abraham Verghese, MD, médico y autor destacado
1.4 Abraham Verghese, MD, Physician and Notable Author
1.5 Eric Topol, MD
1.5 Eric Topol, M.D.
https://pharmaceuticalintelligence.com/2015/09/22/eric-topol-m-d/
1.6 Gregory House, MD
1.6 Gregory House, MD
https://pharmaceuticalintelligence.com/2015/09/22/house-md/
1.7 Peter Mueller, MD, Profesor de Radiología en MGH & HMS: galardonado con el Premio Honorífico de Synergy 2015
1.7 Peter Mueller, MD Professor of Radiology @MGH & HMS – 2015 Synergy’s Honorary Award Recipient
Resumen
Summary
Capítulo 2: Reconocimiento profesional
Chapter 2: Professional Recognition
Introducción
Introduction
2.1 Actas
2.1 Proceedings
2.1.1 Presentaciones de la investigación
2.1.1 Research Presentations
https://pharmaceuticalintelligence.com/2015/10/04/research-presentations/
2.1.2 Actas de la NYAS
2.1.2 Proceedings of the NYAS
https://pharmaceuticalintelligence.com/2015/09/25/proceedings-of-the-nyas/
2.1.3 Reuniones de la Conferencia de Cold Spring Harbor
2.1.3 Cold Spring Harbor Conference Meetings
https://pharmaceuticalintelligence.com/2015/10/02/cold-spring-harbor-conference-meetings/
2.1.4 Seminarios para jóvenes científicos
2.1.4 Young Scientist Seminars
https://pharmaceuticalintelligence.com/2015/10/13/young-scientist-seminars/
2.2 Conozca a las grandes mentes
2.2 Meet Great Minds
2.2.1 Conozca a los galardonados
2.2.1 Meet the Laureates
https://pharmaceuticalintelligence.com/2015/10/01/meet-great-minds/
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
2.2.2 Richard Feynman, genio y laureado
2.2.2 Richard Feynman, Genius and Laureate
https://pharmaceuticalintelligence.com/2015/10/01/richard-feynman-genius-and-laureate/
2.2.3 Fractales y energía térmica
2.2.3 Fractals and Heat Energy
https://pharmaceuticalintelligence.com/2015/10/02/fractals-and-heat-energy/
2.3 Premios de la Fundación MacArthur
2.3 MacArthur Foundation Awards
https://pharmaceuticalintelligence.com/2015/09/30/macarthur-genius-awards/
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
2.4 La contribución de las mujeres fue más allá de Rosie la Remachadora
2.4 Women’s Contributions went beyond Rosie the Riveter
2.4.1 Una operación secreta de la China maoísta conquistó la malaria
2.4.1 Secret Maoist Chinese Operation Conquered Malaria
2.4.2 Los desarrolladores de fármacos antiparasitarios ganan el Premio Nobel
2.4.2 Antiparasite Drug Developers Win Nobel
https://pharmaceuticalintelligence.com/2015/10/09/antiparasite-drug-developers-win-nobel/
2.5 Factores de impacto y logros
2.5 Impact Factors and Achievement
https://pharmaceuticalintelligence.com/2015/10/03/impact-factors-and-achievement/
2.6 Medicina RAPsódica: radiólogos, anestesistas y patólogos
2.6 RAPsodisiac Medicine: Radiologists, Anesthesiologists, and Pathologists
2.6.1 Logros destacados en radiología o radioterapia
2.6.1 Outstanding-achievements-in-radiology-or-radiotherapy
2.6.2 Logros destacados en anestesiología
2.6.2 Outstanding-achievement-in-anesthesiology
https://pharmaceuticalintelligence.com/2015/09/26/outstanding-achievement-in-anesthesiology/
2.6.3 Logros destacados en anatomopatología
2.6.3 Outstanding-achievement-in-pathology
https://pharmaceuticalintelligence.com/2015/09/26/outstanding-achievement-in-pathology/
2.6.4 Temas de anatomopatología: ediciones especiales de Medscape Pathology
2.6.4 Topics in Pathology – Special Issues from Medscape Pathology
https://pharmaceuticalintelligence.com/2015/10/01/topics-in-pathology/
2.7 Cómo ganar el Premio Nobel
2.7 How to win the Nobel Prize
https://pharmaceuticalintelligence.com/2015/10/09/how-to-win-the-nobel-prize/
2.8 Conversaciones sobre medicina
2.8 Conversations about Medicine
https://pharmaceuticalintelligence.com/2015/10/14/conversations-about-medicine/
2.9 Avances actuales de la tecnología médica
2.9 Current Advances in Medical Technology
https://pharmaceuticalintelligence.com/2015/10/13/current-advances-in-medical-technology/
2.10 Atul Butte, MD, PhD
2.10 Atul Butte, MD, PhD
https://pharmaceuticalintelligence.com/2015/10/17/atul-butte/
Resumen
Summary
Capítulo 3: Educación en Ciencias Médicas y de la Salud
Chapter 3: Medical and Allied Health Sciences Education
Introducción
Introduction
3.1 Ganadores del Premio Nacional al Estudiante de Medicina Sobresaliente
3.1 National Outstanding Medical Student Award Winners
https://pharmaceuticalintelligence.com/2015/09/25/national-outstanding-medical-student-award-winners
3.2 Premios destacados en educación médica
3.2 Outstanding Awards in Medical Education
https://pharmaceuticalintelligence.com/2015/09/25/outstanding-awards-in-medical-education/
3.3 Promover la excelencia entre profesionales de la medicina y la enfermería
3.3 Promoting Excellence in Physicians and Nurses
https://pharmaceuticalintelligence.com/2015/09/26/promoting-excellence-in-physicians-and-nurses/
3.4 Excelencia en la orientación académica
3.4 Excellence in mentoring
https://pharmaceuticalintelligence.com/2015/10/02/excellence-in-mentoring/
Resumen
Summary
Capítulo 4: Enseñanza de las Ciencias en Matemáticas y Tecnología (STEM)
Chapter 4: Science Teaching in Mathematics and Technology (STEM)
Introducción
Introduction
4.1 Enseñanza de las Ciencias en Matemáticas y Tecnología
4.1 Science Teaching in Math and Technology
https://pharmaceuticalintelligence.com/2015/09/25/science-teaching-in-math-and-technology/
4.2 La televisión como medio de enseñanza de las ciencias
4.2 Television as a Medium for Science Education
4.2.1 Science Discovery TV
4.2.1 Science Discovery TV
https://pharmaceuticalintelligence.com/2015/09/26/science-discovery-tv/
4.3 De Turing a Watson
4.3 From Turing to Watson
https://pharmaceuticalintelligence.com/2015/10/02/from-turing-to-watson/
Resumen
Summary
SEGUNDA PARTE
Descubrimientos científicos médicos
y
Entrevistas con líderes científicos
PART TWO
Medical Scientific Discoveries
&
Interviews with Scientific Leaders
Capítulo 5: Sistema cardiovascular
Chapter 5: Cardiovascular System
Introducción
Introduction
5.1 El Profesor Lichtstein, fisiólogo y Catedrático de Estudios Cardíacos de la Universidad Hebrea, elegido Decano de la Facultad de Medicina de la Universidad Hebrea de Jerusalén
5.1 Physiologist, Professor Lichtstein, Chair in Heart Studies at The Hebrew University elected Dean of the Faculty of Medicine at The Hebrew University of Jerusalem
5.2 Disfunción mitocondrial y trastornos cardíacos
5.2 Mitochondrial Dysfunction and Cardiac Disorders
https://pharmaceuticalintelligence.com/2013/04/14/mitochondrial-dysfunction-and-cardiac-disorders/
5.3 Contribuciones notables a la cardiología regenerativa
5.3 Notable Contributions to Regenerative Cardiology
https://pharmaceuticalintelligence.com/2013/10/20/notable-contributions-to-regenerative-cardiology/
5.4 Por sus logros en cardiología y enfermedades cardiovasculares: Premio Internacional de Investigación Científica Arrigo Recordati
5.4 For Accomplishments in Cardiology and Cardiovascular Diseases: The Arrigo Recordati International Prize for Scientific Research
5.5 Convertirse en cirujano cardiotorácico: un perfil emergente en el quirófano y a través de las publicaciones científicas
5.5 Becoming a Cardiothoracic Surgeon: An Emerging Profile in the Surgery Theater and through Scientific Publications
5.6 Diagnóstico y biomarcadores: nuevas tendencias de la industria de la genómica frente a las condiciones actuales del mercado y un nuevo programa informático de soporte clínico por expertos en tiempo real, Historical Scientific Leaders Memoirs
5.6 Diagnostics and Biomarkers: Novel Genomics Industry Trends vs Present Market Conditions and Historical Scientific Leaders Memoirs
5.7 Prevención de la ECV y evaluación de las modalidades de formación de imágenes cardiovasculares: puntuación de calcio coronario mediante exploración por TC para justificar o no el uso de estatinas
5.7 CVD Prevention and Evaluation of Cardiovascular Imaging Modalities: Coronary Calcium Score by CT Scan Screening to justify or not the Use of Statin
5.8 2013, el año que revolucionó la medicina y las 11 mejores historias de la cardiología
5.8 2013 as A Year of Revolutionizing Medicine and Top 11 Cardiology Stories
5.9 Reduciendo la brecha en las innovaciones médicas: Elazer Edelman en TEDMED 2013
5.9 Bridging the Gap in Medical Innovations – Elazer Edelman @ TEDMED 2013
5.10 Desarrollo de un stent pancreatobiliar liberador de quimioterapia para el adenocarcinoma ductal pancreático. Investigadores principales: Jeffrey Clark (MGH), Robert Langer (Koch), Elazer Edelman (programa HST de Harvard:MIT)
5.10 Development of a Pancreatobiliary Chemotherapy Eluting Stent for Pancreatic Ductal Adenocarcinoma PIs: Jeffrey Clark (MGH), Robert Langer (Koch), Elazer Edelman (Harvard:MIT HST Program)
5.11 Publicaciones sobre la insuficiencia cardíaca del profesor William Gregory Stevenson, M.D., BWH
5.11 Publications on Heart Failure by Prof. William Gregory Stevenson, M.D., BWH
Resumen
Summary
Capítulo 6: Genómica
Chapter 6: Genomics
Introducción
Introduction
6.1 La genética antes del Proyecto Genoma Humano
6.1 Genetics before the Human Genome Project
6.1.1 ¿Por qué Pauling perdió la «carrera» contra James Watson y Francis Crick? Así describió Crick su descubrimiento en una carta a su hijo
6.1.1 Why did Pauling Lose the “Race” to James Watson and Francis Crick? How Crick Describes his Discovery in a Letter to his Son
6.1.2 La Unidad de Investigación del MRC de John Randall y el papel de Rosalind Franklin en el Kings College
6.1.2 John Randall’s MRC Research Unit and Rosalind Franklin’s role at Kings College
6.1.3 Entrevista con el codescubridor de la estructura del ADN: Watson sobre su libro «La doble hélice» y su cambio de opinión sobre Rosalind Franklin
6.1.3 Interview with the co-discoverer of the structure of DNA: Watson on The Double Helix and his changing view of Rosalind Franklin
6.1.4 El inicio y el desarrollo de la biología molecular y la genómica – Parte I
6.1.4 The Initiation and Growth of Molecular Biology and Genomics, Part I
6.2 El Proyecto Genoma Humano: artículos de interés en pharmaceuticalintelligence.com por varios autores
6.2 The Human Genome Project: Articles of Note @ pharmaceuticalintelligence.com by multiple authors
6.2.1 DESCIFRANDO EL CÓDIGO DE LA VIDA HUMANA: el nacimiento de la bioinformática y la genómica computacional
6.2.1 CRACKING THE CODE OF HUMAN LIFE: The Birth of BioInformatics & Computational Genomics
6.2.2 Ya se ha secuenciado la secuencia eucromática del genoma humano. ¿Qué viene a continuación?
6.2.2 What comes after finishing the Euchromatic Sequence of the Human Genome?
6.2.3 Décimo aniversario del Proyecto Genoma Humano: entrevista con Kevin Davies, PhD – El genoma de los 1000 dólares
6.2.3 Human Genome Project – 10th Anniversary: Interview with Kevin Davies, PhD – The $1000 Genome
6.2.4 El Instituto de Genómica de la Universidad de California en Santa Cruz creará un mapa de las variaciones genéticas humanas
6.2.4 University of California Santa Cruz’s Genomics Institute will create a Map of Human Genetic Variations
6.2.5 Genomas excepcionales: el proceso para encontrarlos
6.2.5 Exceptional Genomes: The Process to find them
https://pharmaceuticalintelligence.com/2014/11/19/exceptional-genomes-the-process-to-find-them/
6.2.6 Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico
6.2.6 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer
6.3 El impacto de la secuenciación del genoma en la biología y la medicina
6.3 The Impact of Genome Sequencing on Biology and Medicine
6.3.1 La genómica en la medicina: una visión de los datos genómicos centrada en el paciente
6.3.1 Genomics in Medicine – Establishing a Patient-Centric View of Genomic Data
6.3.2 Modificación de genes por recombinación de homólogos: Mario Capecchi, Martin Evans, Oliver Smithies
6.3.2 Modification of genes by homologous recombination – Mario Capecchi, Martin Evans, Oliver Smithies
https://pharmaceuticalintelligence.com/2015/09/05/modification-of-genes-by-homologous-recombination/
6.3.3 AAAS 14-18 de febrero de 2013, Boston: Simposio sobre la ciencia de la incertidumbre en la medicina genómica
6.3.3 AAAS February 14-18, 2013, Boston: Symposia – The Science of Uncertainty in Genomic Medicine
6.3.4 La perspectiva metabólica de la expresión epigenética
6.3.4 The Metabolic View of Epigenetic Expression
https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/
6.3.5 La farmacogenómica
6.3.5 Pharmacogenomics
https://pharmaceuticalintelligence.com/2015/01/31/pharmacogenomics/
6.3.6 Fisiopatología neonatal
6.3.6 Neonatal Pathophysiology
https://pharmaceuticalintelligence.com/2015/02/22/neonatal-pathophysiology/
6.3.7 Genética de las enfermedades de la conducción: enfermedad (bloqueo) de la conducción auriculoventricular (AV). Mutaciones genéticas: transcripción, excitabilidad y homeostasis energética
6.3.7 Genetics of Conduction Disease: Atrioventricular (AV) Conduction Disease (block): Gene Mutations – Transcription, Excitability, and Energy Homeostasis
6.3.8 Cartografía en 3D del genoma en combinación con FISH e iARN
6.3.8 3D mapping of genome in combine FISH and RNAi
https://pharmaceuticalintelligence.com/2015/10/01/3d-mapping-of-genome-in-combine-fish-and-rnai/
6.3.9 Proyecto Varioma Humano: catálogo enciclopédico de variantes de secuencias indexadas según la secuencia del genoma humano
6.3.9 Human Variome Project: encyclopedic catalog of sequence variants indexed to the human genome sequence
6.3.10 Mutagénesis del ADN y reparación del ADN
6.3.10 DNA mutagenesis and DNA repair
https://pharmaceuticalintelligence.com/2015/09/05/dna-mutagenesis-and-dna-repair/
6.4 Reconocimiento al liderazgo científico por su contribución a la genómica
6.4 Scientific Leadership Recognition for Contributions to Genomics
6.4.1 Entrevista con Elizabeth H. Blackburn, Carol W. Greider y Jack W. Szostak (44 minutos)
6.4.1 Interview with Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak (44 minutes)
http://www.nobelprize.org/mediaplayer/index.php?id=1227
6.4.2 Pioneros de la reparación del ADN ganan el Nobel: Tomas Lindahl, Paul Modrich y Aziz Sancar, Premio Nobel de Química 2015 por los mecanismos de reparación del ADN
6.4.2 DNA Repair Pioneers Win Nobel – Tomas Lindahl, Paul Modrich, and Aziz Sancar 2015 Nobel Prize in Chemistry for the mechanisms of DNA repair
https://pharmaceuticalintelligence.com/2015/10/09/dna-repair-pioneers-win-nobel/
6.4.3 Dr. Richard Lifton, doctorado por la Universidad de Yale y el Instituto Médico Howard Hughes: galardonado en los Premios Breakthrough 2014 en Ciencias de la Vida por el descubrimiento de los genes y mecanismos bioquímicos que causan la hipertensión
6.4.3 Richard Lifton, MD, PhD of Yale University and Howard Hughes Medical Institute: Recipient of 2014 Breakthrough Prizes Awarded in Life Sciences for the Discovery of Genes and Biochemical Mechanisms that cause Hypertension
6.5 Líderes actuales del campo de la genómica
6.5 Contemporary Field Leaders in Genomics
6.5.1 ROBERT LANGER
6.5.1 ROBERT LANGER
6.5.1.1 2014 Premios Breakthrough concedidos en Física Fundamental y Ciencias de la Vida con una dotación de 21 millones de dólares: Robert Langer del MIT recibe 3 millones de dólares
6.5.1.1 2014 Breakthrough Prizes Awarded in Fundamental Physics and Life Sciences for a Total of $21 Million – MIT’s Robert Langer gets $3 Million
6.5.1.2 Medalla Nacional de la Ciencia de 2006: Robert S. Langer
6.5.1.2 National Medal of Science – 2006 Robert S. Langer
https://pharmaceuticalintelligence.com/2015/09/21/national-medal-of-science/
6.5.1.3 Confluencia de la química, la física y la biología
6.5.1.3 Confluence of Chemistry, Physics, and Biology
https://pharmaceuticalintelligence.com/2015/09/24/confluence-of-chemistry-physics-and-biology/
6.5.2 JENNIFER DOUDNA. Premio Nobel de Química 2020: Emmanuelle Charpentier y Jennifer A. Doudna
6.5.2 JENNIFER DOUDNA – The Nobel Prize in Chemistry 2020: Emmanuelle Charpentier & Jennifer A. Doudna
Reporteros: Stephen J. Williams, Ph.D. y Aviva Lev-Ari, PhD, RN
Reporters: Stephen J. Williams, Ph.D. and Aviva Lev-Ari, PhD, RN
6.5.2.1 Jennifer Doudna y los equipos de cosmología, ganadores del Premio Breakthrough 2015
6.5.2.1 Jennifer Doudna, cosmology teams named 2015 Breakthrough Prize winners
6.5.2.2 ACTUALIZACIÓN. Interpretación médica de la frontera genómica: el CRISPR/Cas9: la tecnología de edición genética para nuevas terapias
6.5.2.2 UPDATED – Medical Interpretation of the Genomics Frontier – CRISPR – Cas9: Gene Editing Technology for New Therapeutics
Autores y redactores: Larry H Bernstein, MD, FCAP, Stephen J Williams, PhD y Aviva Lev-Ari, PhD, RN
Authors and Curators: Larry H Bernstein, MD, FCAP, Stephen J Williams, PhD and Aviva Lev-Ari, PhD, RN
6.5.3 ERIC LANDER
6.5.3 ERIC LANDER
6.5.3.1 Entrega del Premio Harvey el 30 de abril de 2012: en el Technion-Israel Institute of Technology, a Eric S. Lander del MIT y Eli Yablonovitch de la UC, Berkeley
6.5.3.1 2012 Harvey Prize in April 30: at the Technion-Israel Institute of Technology to Eric S. Lander @MIT & Eli Yablonovitch @UC, Berkeley
6.5.4 La genómica en 2013. La era más allá de la secuenciación del genoma humano: Francis Collins, Craig Venter, Eric Lander y otros
6.5.4 2013 Genomics: The Era Beyond the Sequencing of the Human Genome: Francis Collins, Craig Venter, Eric Lander, et al.
6.5.5 Reconocimientos a las contribuciones en genómica por los premios Dan David
6.5.5 Recognitions for Contributions in Genomics by Dan David Prize Awards
6.5.6 65 laureados con el Premio Nobel se reúnen con 650 jóvenes científicos en los campos de la fisiología y la medicina, la física y la química, del 28 de junio al 3 de julio de 2015, en Lindau y la isla de Mainau, Alemania
6.5.6 65 Nobel Laureates meet 650 young scientists covering the fields of physiology and medicine, physics, and chemistry, 28 June – 3 July, 2015, Lindau & Mainau Island, Germany
Resumen
Summary
Capítulo 7: Los ARN
Chapter 7: The RNAs
Introducción
Introduction
7.1 La ARN-polimerasa: base molecular de la transcripción del ADN. Roger Kornberg, MD
7.1 RNA polymerase – molecular basis for DNA transcription – Roger Kornberg, MD
7.2 Un gen, una proteína. Charles Yanofsky
7.2 One gene, one protein – Charles Yanofsky
https://pharmaceuticalintelligence.com/2015/09/05/one-gene-one-protein/
7.3 Convirtiendo la información genética en proteínas funcionales. James E. Darnell Jr.
7.3 Turning genetic information into working proteins – James E. Darnell Jr.
https://pharmaceuticalintelligence.com/2015/09/05/turning-genetic-information-into-working-proteins/
7.4 ARN pequeños pero poderosos. Victor Ambros, David Baulcombe y Gary Ruvkun, Phillip A. Sharp
7.4 Small but mighty RNAs – Victor Ambros, David Baulcombe, and Gary Ruvkun, Phillip A. Sharp
https://pharmaceuticalintelligence.com/2015/09/05/small-but-mighty-rnas/
7.5 Redes de genes de respuesta al estrés, Nina V. Fedoroff
7.5 Stress-response gene networks – Nina V. Fedoroff
https://pharmaceuticalintelligence.com/2015/09/05/stress-response-gene-networks/
Resumen
Summary
Capítulo 8: Proteómica, plegado de proteínas y regulación celular
Chapter 8: Proteomics, Protein-folding, and Cell Regulation
Introducción
Introduction
8.1 La vida y obra de Allan Wilson
8.1 The Life and Work of Allan Wilson
https://pharmaceuticalintelligence.com/2015/01/20/the-life-and-work-of-allan-wilson/
8.2 Proteómica
8.2 Proteomics
https://pharmaceuticalintelligence.com/2015/01/31/proteomics/
8.3 Más complejidad en la evolución de las proteínas
8.3 More Complexity in Protein Evolution
https://pharmaceuticalintelligence.com/2015/01/18/more-complexity-in-protein-evolution/
8.4 Proteínas: un registro evolutivo de la diversidad y la adaptación
8.4 Proteins: An evolutionary record of diversity and adaptation
8.5 Héroes de la investigación médica básica. Leroy Hood
8.5 Heroes in Basic Medical Research – Leroy Hood
https://pharmaceuticalintelligence.com/2015/09/06/heroes-in-basic-medical-research-leroy-hood/
8.6 Los investigadores de la ubiquitina ganan el Premio Nobel. Ciechanover, Hershko y Rose premiados por el descubrimiento de la proteólisis mediada por la ubiquitina
8.6 Ubiquitin researchers win Nobel – Ciechanover, Hershko, and Rose awarded for discovery of ubiquitin-mediated proteolysis
https://pharmaceuticalintelligence.com/2015/09/05/ubiquitin-researchers-win-nobel/
8.7 La amortiguación de los módulos genéticos implicados en el metabolismo del ciclo de los ácidos tricarboxílicos proporciona regulación homeostática
8.7 Buffering of genetic modules involved in tricarboxylic acid cycle metabolism provides homeostatic regulation
8.8 Perfiles dinámicos de proteínas
8.8 Dynamic Protein Profiling
https://pharmaceuticalintelligence.com/2015/10/02/dynamic-protein-profiling/
8.9 Plegado de proteínas
8.9 Protein folding
https://pharmaceuticalintelligence.com/2015/09/09/protein-folding/
Introducción al mal plegamiento de las proteínas
Introduction to Protein misfolding
8.9.1 Mal plegamiento de las proteínas y priones. Susan L. Lindquist, Stanley B. Prusiner
8.9.1 Protein misfolding and prions – Susan L. Lindquist, Stanley B. Prusiner
https://pharmaceuticalintelligence.com/2015/09/11/protein-misfolding-and-prions-3/
8.9.2 Censo seleccionado de las proteínas moduladoras de la autofagia y las moléculas pequeñas que son posibles dianas para el tratamiento del cáncer
8.9.2 A Curated Census of Autophagy-Modulating Proteins and Small Molecules Candidate Targets for Cancer Therapy
8.9.3 Insuficiencia de S voluntaria e involuntaria
8.9.3 Voluntary and Involuntary S-Insufficiency
https://pharmaceuticalintelligence.com/2015/03/07/transthyretin-and-the-stressful-condition/
8.9.4 Transtiretina y masa corporal magra en estado estable y de estrés
8.9.4 Transthyretin and Lean Body Mass in Stable and Stressed State
8.9.5 La cuestión del retraso del crecimiento en las llanuras del Ganges
8.9.5 The matter of stunting in the Ganges Plains
https://pharmaceuticalintelligence.com/2015/10/15/the-matter-of-stunting-in-the-ganges-plains/
8.9.6 Proteínas, formación de imágenes y agentes terapéuticos
8.9.6 Proteins, Imaging and Therapeutics
https://pharmaceuticalintelligence.com/2015/10/01/proteins-imaging-and-therapeutics/
Resumen
Summary
8.10 Plegado de proteínas y carga de las vesículas
8.10 Protein Folding and Vesicle Cargo
8.10.1 Proteínas de choque térmico (HSP) y chaperonas moleculares
8.10.1 Heat Shock Proteins (HSP) and Molecular Chaperones
https://pharmaceuticalintelligence.com/2016/04/13/heat-shock-proteins-and-molecular-chaperones/
8.10.2 Chaperona molecular de unión al colágeno HSP47: su papel en la fibrosis intestinal. Las células epiteliales colónicas y los miofibroblastos subepiteliales
8.10.2 Collagen-binding Molecular Chaperone HSP47: Role in Intestinal Fibrosis – colonic epithelial cells and sub epithelial myofibroblasts
Larry H Bernstein, MD, FCAP y Aviva Lev-Ari, PhD, RN
Larry H Bernstein, MD, FCAP and Aviva Lev-Ari, PhD, RN
8.10.3 Biología, fisiología y fisiopatología de las proteínas de choque térmico
8.10.3 Biology, Physiology and Pathophysiology of Heat Shock Proteins
8.10.4 El papel de los exosomas en la regulación metabólica
8.10.4 The Role of Exosomes in Metabolic Regulation
https://pharmaceuticalintelligence.com/2017/10/08/the-role-of-exosomes-in-metabolic-regulation/
Capítulo 9: Neurociencia
Chapter 9: Neuroscience
Introducción
Introduction
9.1 Premio Nobel de Fisiología o Medicina 2013 por el transporte celular: James E. Rothman de la Universidad de Yale; Randy W. Schekman de la Universidad de California, Berkeley; y el Dr. Thomas C. Südhof de la Universidad de Stanford
9.1 Nobel Prize in Physiology or Medicine 2013 for Cell Transport: James E. Rothman of Yale University; Randy W. Schekman of the University of California, Berkeley; and Dr. Thomas C. Südhof of Stanford University
9.2 Proteínas que controlan la liberación de neurotransmisores. Richard H. Scheller
9.2 Proteins that control neurotransmitter release – Richard H. Scheller
https://pharmaceuticalintelligence.com/2015/09/06/proteins-that-control-neurotransmitter-release/
9.3 Héroes de la investigación médica básica. Robert J. Lefkowitz
9.3 Heroes in Basic Medical Research – Robert J. Lefkowitz
9.4 LA MENTE Y LA MEMORIA: BIOLÓGICA Y DIGITAL. Simposio del Premio Dan David 2014
9.4 MIND AND MEMORY: BIOLOGICAL AND DIGITAL – 2014 Dan David Prize Symposium
9.5 Una nueva forma de moverse, Michael Sheetz, James Spudich, Ronald Vale
9.5 A new way of moving – Michael Sheetz, James Spudich, Ronald Vale
9.6 Función de los núcleos basales
9.6 Role the basal ganglia
https://pharmaceuticalintelligence.com/2015/09/06/role-of-the-basal-ganglia/
9.7 La neurogenética del lenguaje: Patricia Kuhl, Premio George A. Miller 2015
9.7 The Neurogenetics of Language – Patricia Kuhl – 2015 George A. Miller Award
https://pharmaceuticalintelligence.com/2015/09/06/the-neurogenetics-of-language-patricia-kuhl/
9.8 La estructura de nuestro sistema visual
9.8 The structure of our visual system
https://pharmaceuticalintelligence.com/2015/09/06/the-structure-of-our-visual-system/
9.9 Logros destacados en la investigación de la esquizofrenia
9.9 Outstanding Achievement in Schizophrenia Research
https://pharmaceuticalintelligence.com/2015/09/06/outstanding-achievement-in-schizophrenia-
9.10 Fallece a los 92 años George A. Miller, pionero de la psicología cognitiva
9.10 George A. Miller, a Pioneer in Cognitive Psychology, Is Dead at 92
9.11 Entender qué ocurre en el cerebro que causa las enfermedades mentales
9.11 To understand what happens in the brain to cause mental illness
9.12 Cerebro y cognición
9.12 Brain and Cognition
https://pharmaceuticalintelligence.com/2015/10/14/brain-and-cognition/
9.13 Reducir los síntomas de las enfermedades mentales y reeducar el cerebro
9.13 To reduce symptoms of mental illness and retrain the brain
9.14 Comportamiento
9.14 Behavior
https://pharmaceuticalintelligence.com/2015/09/10/behavior/
9.15 Artículos notables sobre neurociencias
9.15 Notable Papers in Neurosciences
https://pharmaceuticalintelligence.com/2015/10/09/notable-papers-in-neurosciences/
9.16 Pirroloquinolina quinona (PQQ): un suplemento no probado
9.16 Pyrroloquinoline quinone (PQQ) – an unproved supplement
Resumen
Summary
Capítulo 10: Microbiología e Inmunología
Chapter 10: Microbiology & Immunology
Introducción
Introduction
10.1 Genes de referencia en el microbioma intestinal humano: el catálogo de BGI
10.1 Reference Genes in the Human Gut Microbiome: The BGI Catalogue
10.2 Desnutrición en la India, alta tasa de mortalidad neonatal y retraso en el crecimiento de los niños menores de cinco años
10.2 Malnutrition in India, high newborn death rate and stunting of children age under five years
10.3 En sus propias palabras: fallece a los 81 años Leonard Herzenberg, el inmunólogo que revolucionó la investigación
10.3 In His Own Words: Leonard Herzenberg, The Immunologist Who Revolutionized Research, Dies at 81
10.4 Héroes de la investigación médica: el Dr. Robert Ting y los retrovirus en el SIDA y el cáncer
10.4 Heroes in Medical Research: Dr. Robert Ting, Ph.D. and Retrovirus in AIDS and Cancer
10.5 Premio Tang de 2014: inmunidad y cáncer
10.5 Tang Prize for 2014: Immunity and Cancer
https://pharmaceuticalintelligence.com/2014/06/20/tang-prize-for-2014-immunity-and-cancer/
10.6 Modelo halstediano de la progresión del cáncer
10.6 Halstedian model of cancer progression
https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/
10.7 La historia de la hematología y las ciencias afines
10.7 The History of Hematology and Related Sciences
https://pharmaceuticalintelligence.com/2014/12/05/the-history-of-hematology-and-related-sciences/
10.8 La emergencia de la anatomía patológica en el siglo XXI
10.8 Pathology Emergence in the 21st Century
https://pharmaceuticalintelligence.com/2014/08/03/pathology-emergence-in-the-21st-century/
10.9 Héroes de la investigación médica: Barnett Rosenberg y el descubrimiento del cisplatino
10.9 Heroes in Medical Research: Barnett Rosenberg and the Discovery of Cisplatin
10.10 Respuestas inmunitarias mediadas por los linfocitos T y vías de señalización activadas por los TLR. Bruce A. Beutler, Jules A. Hoffmann, Ralph M. Steinman
10.10 T cell-mediated immune responses & signaling pathways activated by TLRs – Bruce A. Beutler, Jules A. Hoffmann, Ralph M. Steinman
10.11 Roeder: el coactivador OCA-B, el primer coactivador específico de las células, descubierto por Roeder en 1992, es exclusivo de los linfocitos B del sistema inmunitario
10.11 Roeder – the coactivator OCA-B, the first cell-specific coactivator, discovered by Roeder in 1992, is unique to immune system B cells
Resumen
Summary
Capítulo 11: Hormonas endocrinas
Chapter 11: Endocrine Hormones
Introducción
Introduction
11.1 Obesidad, 2010. Douglas L. Coleman, Jeffrey M. Friedman
11.1 Obesity – 2010 Douglas L. Coleman, Jeffrey M. Friedman
https://pharmaceuticalintelligence.com/2015/09/07/obesity/
11.2 Receptores solitarios: RXR. Jensen, Chambon y Evans. Los receptores nucleares provocan la producción de ARN en respuesta a las hormonas esteroideas
11.2 Lonely Receptors: RXR – Jensen, Chambon, and Evans – Nuclear receptors provoke RNA production in response to steroid hormones
https://pharmaceuticalintelligence.com/2015/09/07/lonely-receptors-rxr-jensen-chambon-and-evans/
11.3 El premio Fred Conrad Koch a la trayectoria profesional, el más alto honor de la Endocrine Society, reconoce los logros de toda una vida y las contribuciones excepcionales de una persona al campo de la endocrinología
11.3 The Fred Conrad Koch Lifetime Achievement Award—the Society’s highest honor—recognizes the lifetime achievements and exceptional contributions of an individual to the field of endocrinology
11.4 Premio Gerald D Aurbach a la investigación aplicable sobresaliente
11.4 Gerald D Aurbach Award for Outstanding Translational Research
11.5 Premio Roy O. Greep a la Investigación destacada en endocrinología. Martin M. Matzuk
11.5 Roy O. Greep Award for Outstanding Research in Endocrinology – Martin M. Matzuk
11.6 Premios de la Sociedad Americana de Fisiología
11.6 American Physiology Society Awards
https://pharmaceuticalintelligence.com/2015/09/09/american-society-of-physiology-awards/
11.7 Solomon Berson y Rosalyn Yalow
11.7 Solomon Berson and Rosalyn Yalow
https://pharmaceuticalintelligence.com/2015/09/07/solomon-berson-and-rosalyn-yalow/
Resumen
Summary
Capítulo 12: Células madre
Chapter 12: Stem Cells
Introducción
Introduction
12.1 Las células maduras pueden reprogramarse para convertirse en pluripotentes. John Gurdon y Shinya Yamanaka
12.1 Mature cells can be reprogrammed to become pluripotent – John Gurdon and Shinya Yamanaka
https://www.nobelprize.org/nobel_prizes/medicine/laureates/2012/advanced-medicineprize2012.pdf
12.2 Observación de las colonias de bazo en ratones y comprobación de la existencia de las células madre. Till y McCulloch
12.2 Observing the spleen colonies in mice and proving the existence of stem cells – Till and McCulloch
12.3 Premio McEwen a la innovación: Irving Weissman, M.D., Escuela de Medicina de Stanford, y Hans Clevers, M.D., Ph.D., Instituto Hubrecht
12.3 McEwen Award for Innovation: Irving Weissman, M.D., Stanford School of Medicine, and Hans Clevers, M.D., Ph.D., Hubrecht Institute
12.4 Biología del desarrollo
12.4 Developmental biology
https://pharmaceuticalintelligence.com/2015/09/08/developmental-biology/
12.5 Ingeniería genómica mediada por CRISPR/Cas. Rudolf Jaenisch
12.5 CRISPR/Cas-mediated genome engineering – Rudolf Jaenisch
https://pharmaceuticalintelligence.com/2015/09/08/crisprcas-mediated-genome-engineering/
12.6 Ribozimas y máquinas de ARN. El trabajo de Jennifer A. Doudna
12.6 Ribozymes and RNA Machines – Work of Jennifer A. Doudna
12.7 Ralph Brinster, el «padre de la transgénesis»
12.7 Ralph Brinster, ‘Father of Transgenesis’
https://pharmaceuticalintelligence.com/2015/09/08/ralph-brinster-father-of-transgenesis/
12.8 Modificación genética dirigida
12.8 Targeted gene modification
https://pharmaceuticalintelligence.com/2015/09/08/targeted-gene-modification/
12.9 Células madre y cáncer
12.9 Stem Cells and Cancer
https://pharmaceuticalintelligence.com/2015/09/10/stem-cells-and-cancer/
12.10 Premios ALPSP
12.10 ALPSP Awards
https://pharmaceuticalintelligence.com/2015/09/10/apls-awards/
12.11 Premio Eppendorf para jóvenes investigadores europeos
12.11 Eppendorf Award for Young European Investigators
https://pharmaceuticalintelligence.com/2015/09/18/eppendorf-award-for-young-european-investigators/
12.12 Noticias de última hora sobre la ingeniería genómica, la DMT2 y los tratamientos antineoplásicos
12.12 Breaking news about genomic engineering, T2DM and cancer treatments
Resumen
Summary
Capítulo 13: Impresión 3D y aplicación médica
Chapter 13: 3D Printing and Medical Application
Introducción
Introduction
13.1 Impresión en 3D
13.1 3D Printing
https://pharmaceuticalintelligence.com/2015/09/10/3-d-printing/
13.2 ¿Qué es la impresión 3D?
13.2 What is 3D printing?
https://pharmaceuticalintelligence.com/2015/09/10/what-is-3-d-printing/
13.3 El científico que está haciendo que la impresión 3D sea más humana
13.3 The Scientist Who Is Making 3D Printing More Human
13.4 Únase a estos grupos de impresión médica en 3D en Twitter y LinkedIn para conocer las últimas novedades
13.4 Join These Medical 3D Printing Groups on Twitter and LinkedIn for great up to date news
13.5 Neri Oxman y su grupo, Mediated Matter del MIT Media Lab, han desarrollado una técnica para imprimir en 3D vidrio fundido
13.5 Neri Oxman and her Mediated Matter group @MIT Media Lab have developed a technique for 3D-printing Molten Glass
13.6 El «chemputer» que podría imprimir cualquier fármaco
13.6 The ‘chemputer’ that could print out any drug
https://pharmaceuticalintelligence.com/2015/09/10/drug-chemputer/
13.7 Uso de la bioimpresión en 3D para crear tejido vivo cardíaco: imprime tu corazón
13.7 3-D-Bioprinting in use to Create Cardiac Living Tissue: Print your Heart out
13.8 Perspectiva de LPBI sobre las aplicaciones médicas y de ciencias de la vida. La impresión en 3D: tintas biológicas, biomateriales y biopolímeros
13.8 LPBI’s Perspective on Medical and Life Sciences Applications – 3D Printing: BioInks, BioMaterials-BioPolymer
13.9 MEMS médicos, sensores e impresión en 3D: frontera en el control del proceso de los biomateriales
13.9 Medical MEMS, Sensors and 3D Printing: Frontier in Process Control of BioMaterials
Aviva Lev-Ari, PhD, RN y Adam Sonnenberg, BSC, MSc(c) en 2021: PhD, estudiante de medicina de 2.º año
Aviva Lev-Ari, PhD, RN and Adam Sonnenberg, BSC, MSc(c) In 2021: PhD, Medical Student 2nd year
13.10 Los NIH y la FDA sobre la impresión en 3D para aplicaciones médicas: puntos de vista sobre la impresión de fármacos a la carta, reparación directa de tejidos in situ y órganos impresos para implantes vivos
13.10 NIH and FDA on 3D Printing in Medical Applications: Views for On-demand Drug Printing, in-Situ direct Tissue Repair and Printed Organs for Live Implants
13.11 La técnica de fabricación «pop-up» supera a la impresión en 3D
13.11 ‘Pop-up’ fabrication technique trumps 3D printing
https://pharmaceuticalintelligence.com/2015/01/14/pop-up-fabrication-technique-trumps-3d-printing/
13.12 Potenciación de la ONTOLOGÍA de la investigación sobre la impresión en 3D
13.12 Augmentation of the ONTOLOGY of the 3D Printing Research
13.13 Microscopía de superresolución
13.13 Superresolution Microscopy
https://pharmaceuticalintelligence.com/2015/10/14/superresolution-microscopy/
Resumen
Summary
Capítulo 14: Química medicinal sintética
Chapter 14: Synthetic Medicinal Chemistry
Introducción
Introduction
14.1 Perspectivas de la química medicinal biológica y sintética
14.1 Insights in Biological and Synthetic Medicinal Chemistry
14.2 Trabajos pioneros en el ámbito del cáncer
14.2 Breakthrough work in cancer
https://pharmaceuticalintelligence.com/2015/10/01/breakthrough-work-in-cancer/
Resumen de la segunda parte
Summary to Part Two
Resumen del volumen y conclusiones
Volume Summary and Conclusions
EPÍLOGO
EPILOGUE
SEGUNDO VOLUMEN
Descubrimientos científicos médicos para el siglo XXI
y
entrevistas con líderes científicos
Autor, redactor y editor:
Medical Scientific Discoveries for the
21st Century
&
Interviews with Scientific Leaders
Disponible en Amazon.com desde el 09/12/2017
https://www.amazon.com/dp/B078313281
PART C:
The Editorials of the original e-Books in English in Audio format
Series E: Patient-Centered Medicine
Series Content Consultant: Larry H Bernstein, MD, FCAP
Medical Scientific Discoveries for the 21st Century
&
Interviews with Scientific Leaders
2017
Available on Amazon.com since December 9, 2017
https://www.amazon.com/dp/B078313281
Author, Curator and Editor
Larry H Bernstein, MD, FCAP
Chief Scientific Officer
Leaders in Pharmaceutical Business Intelligence
Image Source: Courtesy of Shutterstock
Aviva Lev-Ari, PhD, RN
Editor-in-Chief BioMed e-Series of e-Books
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
List of Contributors & Contributors’ Biographies
Volume Author, Curator and Editor
Preface, all Introductions, all Summaries and Epilogue
Part One:
1.4, 1.5, 1.6, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.2.1, 2.2.2, 2.2.3, 2.3, 2.4, 2.4.1, 2.4.2, 2.5, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.7, 2.8, 2.9, 2.10, 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 4.3
Part Two:
5.2, 5.3, 5.6, 6.1.2, 6.1.4, 6.2.1, 6.2.2, 6.3.2, 6.3.4, 6.3.5, 6.3.6, 6.3.8, 6.3.10, 6.4.1, 6.4.2, 6.5.1.2, 6.5.1.3, 6.5.2.2, 7.1, 7.2, 7.3, 7.4, 7.5, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.9.1, 8.9.3, 8.9.4, 8.9.5, 8.9.6, 8.10.1, 8.10.2, 8.10.3, 8.10.4, 9.2, 9.3, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 10.2, 10.5, 10.6, 10.7, 10.8, 10.10, 10.11, 11.1, 11.2, 11.3, 11.5, 11.6, 11.7, 12.1, 12.2, 12.3, 12.4, 12.5, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12, 13.1, 13.2, 13.3, 13.6, 13.12, 13.13, 14.1, 14.2
Guest Authors:
Part Two: 6.1.1
Part Two: 6.2.6, 6.5.2, 6.5.2.2, 10.4, 10.9, 13.4
Part One:
1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 2.2.1, 2.3
Part Two:
5.1, 5.4, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11, 6.1.3, 6.2.3, 6.2.4, 6.2.5, 6.3.1, 6.3.3, 6.3.7, 6.3.9, 6.4.3, 6.5.1.1, 6.5.2, 6.5.2.1, 6.5.2.2, 6.5.3.1, 6.5.4, 6.5.5, 6,5,6, 8.9.2, 8.10.2, 9.1, 9.4, 10.1, 10.3, 11.4, 12.6, 13.5, 13.7, 13.8, 13.9, 13.10, 13.11
Adam Sonnenberg, BSC, MSc(c) In 2021: PhD, Medical Student 2nd year
Part Two: 13.9
Editorials in the electronic Table of Contents
Preface and Volume Introduction
In PART ONE: Physician as Authors, Writers in Medicine and Educator in Public Health we cover Physicians as Authors, Professional Recognition, Medical and Allied Health Sciences Education and Science Teaching in Math and Technology (STEM). In PART TWO: Medical Scientific Discoveries & Interviews with Scientific Leaders we cover the Cardiovascular System, Genomics, The RNAs, Proteomics, Protein-folding, and Cell Regulation, Neuroscience, Microbiology & Immunology, Endocrine Hormones, Stem Cells, 3D Printing and Medical Application and Synthetic Medicinal Chemistry.
Discoveries in medical and biological sciences e-Book identifies many heroes of our time, just as it describes a trend of development in the related and allied professions. A more integrated structure is emerging. The future of medical research and the practice of medicine will be more highly dependent on integrated work of professionals who have complementary skills. This is a challenge for current and future education.
Why 21st Century is in Celebration of Medical Discoveries and its HEROES?
In the year 2017, we have had a remarkable activity in discoveries in physics, astrophysics, organic and inorganic chemistry, biology and evolution, and engineering that is enlightening our living on planet earth. At the same time, we are faced with incomparably difficult times in grappling with unending culture wars, natural and human disasters, disease, and large inequalities in opportunities that endangers human populations. The progress in sciences has led to advances in microbiology and virology, pharmacology, and medicine and allied health care. The advances have not been fully shared across the globe. This book is intended to first recognize the kind of educational opportunities and the choices that accomplished people have made to reach this plateau that has seen the decoding of the human gene, the birth of genetic engineering, and the dissection of vital metabolic signaling pathways essential for the understanding of life, disease, and death.
This is the second volume in the Patient-centered Medicine e-Series. Its focus is articles on medical discoveries. We covered already the late 19th to the late 20th Century in an article. There were many discoveries of Nobel Prize stature by scientists and physicians in physics, chemistry, infectious disease, immunology, and the emergence of biochemical genetic and molecular biology. The second volume is focused on achievements and the scientists of distinction in the late 20th and early 21st Century. In developing this series, we considered the sources of major national and international awards, and the recognition of the professional societies. The achievements in proteomics, genomics, cell signaling and gene targeting are well covered, as well as endocrinology, neurology, and regenerative and stem cell research. Reference to Content: Medical biographies; Interviews with scientists; Awards and recognition; Science education; Health Sciences preparation; Childhood education; Flexner report; Accreditation; video reports. Life science categories; Science based medical specialties.
This series of articles follows an earlier article on scientific discoveries of the late 19th and 20th centuries. However, it is noteworthy to consider that the lifetime achievements recognized in the first decade of the 21st millennium reach back to an accumulation of half a century of sustained research. These articles provide a significant amount of insight and background for understanding the motivations of the contributors over a productive lifetime, and also confirms the repeated observation of influential exposures to the work of other innovators. The material contains interviews with investigators, peer comments about their mentoring of young investigators, and also some very interesting background on childhood experiences. The biographical content is as interesting as the discoveries and honors discussed.
PART ONE
Physician as Authors, Writers in Medicine and
Educator in Public Health
Introduction
This first portion of the book is concentrated on recognizing some of many individuals who have been recognized for their achievements in biomedical science and to provide a glimpse at the structure of the profession of medicine. Even beyond that, it gives notice to the educational requirements and what is being done to meet the needs in the not distant future of students who would aspire to work in the healthcare and healthcare research professions. The needs have rapidly expanded, and the available caregivers has not kept up with the growth of an aging population.
Chapter 1: Physicians as Authors
Introduction
In the 19th century we saw the emergence of a social class of educated European people, that also had a growth in the United States and Canada. The immigrant population had a strong desire to make a difference in society, and parents wanted them to ascend a ladder of opportunity. This chapter identifies a selection of physicians who excelled in written communication, in short stories, novels, plays, not to mention composing. One of the great examples is Anton Checkov, who also wrote about the prisons in Russia.
Summary
We have seen some examples of individuals who pursued medical careers because Medicine is a valued profession. While some practiced medicine and wrote, others had a magnificent career in writing. Somerset Maugham and Arthur Conan Doyle are two such examples of the latter. Not covered is the development of a profession of medical and science writers, such as, Gina Kolata. Science reporting is becoming an important bridge between scientific discovery and public perception of science.
Chapter 2: Professional Recognition
Introduction
The identification of significant accomplishments requires reviewing the recognition by key professional organizations. Much of this follows in Part II. The New York Academy of Sciences has long been a leading, though not exclusive organization for the advancement of science. There is also treatment of the “Genius” Awards, and not to be missed is the huge untold story of the “women computers” in WWII. This chapter also opens the gate to a view of medicine that is not in the direct view of the patient, but vital for disease discovery and treatment.
Summary
Radiologists, anesthesiologists, and pathologists have been called RAP physicians. They have played a vital role in patient management that has actually become more specialized with progress in medicine. The success in diagnostic imaging has expanded with greatly improved technology, and it includes both noninvasive and invasive procedures, and do also has radiotherapy become essential and has become highly targeted. Anesthesiologist are masters of general and local pain alleviation, and they are expert in drug interactions. The pathology profession has become highly specialized in carcinomas and sarcomas, and the practice of clinical pathology is a rapidly growing segment because of diagnostic instrumentation, automation, and minimum specimen requirement.
Chapter 3: Medical and Allied Health Sciences Education
Introduction
This chapter focuses on the education of physicians and nurses, but there is a parallel pathway in the preparation of medical technologists, radiotherapists, physiotherapists, and anesthetist. The education in preparation for these professions is regulated and programs receive accreditation from such organization as the AMA, American Nursing Association, and National Accrediting Agency for Clinical Sciences (NAACLS).
Summary
The chapter has not detailed the policy set forth in the Flexner Report, the emergence of Johns Hopkins University as an innovation in medical education, or of Rockefeller University as an innovation in medical research. It is important to realize that the preparation of physicians, and professionals in the health sciences professions rose to a previously unknown level after the Flexner Report. It is also important to recognize, as we had in the Halstedian view to breast cancer, that the great physician Sir William Osler taught an Oslerian view of compassionate medicine that required the generation of physicians who were well knowledgeable in literature and the arts. If this caused the restriction of medical students to a “privileged class”, that was not the intent. Unfortunately, the Oslerian model gave way to an emphasis on organic chemistry and genetics with the emerging concept of “hereditary disease”.
Chapter 4: Science Teaching in Mathematics and Technology (STEM)
Introduction
This chapter illuminates the importance of science education at an earlier stage than the college level. The community colleges are not mentioned, but that is a stepping stone in preparation. The most important purpose of preparation is the mastery of critical thinking. Teaching of science and mathematics has improved and begins at the preschool level. The importance of television and video media intended for childhood education is described.
Summary
The child is endowed with curiosity. the curiosity can be expanded or quenched, depending on the attention given to children during early development. This has become a problem of social class and of the single parent home. However, single parentage is not necessarily a disadvantage. The social and home environment are important factors in advancing childhood learning.
PART TWO
Medical Scientific Discoveries
&
Interviews with Scientific Leaders
Chapter 5: Cardiovascular System
Introduction
Cardiovascular diseases have been comprehensively covered in several volumes of the LPBI’s BioMed e-Series:
Six volumes are BUNDLED BY AMAZON.COM INTO A SIX-VOLUME SERIES FOR $515
https://lnkd.in/e6WkMgF
Six Volumes in English Text
- Perspectives on Nitric Oxide in Disease Mechanisms, on Amazon since 6/2/12013
http://www.amazon.com/dp/B00DINFFYC
- Cardiovascular, Volume Two: Cardiovascular Original Research: Cases in Methodology Design for Content Co-Curation, on Amazon since 11/30/2015
http://www.amazon.com/dp/B018Q5MCN8
- Cardiovascular Diseases, Volume Three: Etiologies of Cardiovascular Diseases: Epigenetics, Genetics and Genomics, on Amazon since 11/29/2015
http://www.amazon.com/dp/B018PNHJ84
- Cardiovascular Diseases, Volume Four: Regenerative and Translational Medicine: The Therapeutics Promise for Cardiovascular Diseases, on Amazon since 12/26/2015
http://www.amazon.com/dp/B019UM909A
- Cardiovascular Diseases, Volume Five: Pharmacological Agents in Treatment of Cardiovascular Diseases. On com since 12/23/2018
https://www.amazon.com/dp/B07MGSFDWR
- Cardiovascular Diseases, Volume Six: Interventional Cardiology for Disease Diagnosis and Cardiac Surgery for Condition Treatment. On com since 12/24/2018
Six Volumes in Spanish Audio
For the Series in Spanish Audio ($385) go to
https://www.amazon.com/gp/product/B0BPR9L1ZX?ref_=dbs_p_pwh_rwt_anx_a_lnk
This chapter has a specific focus on the contributions of major investigators to the developing story of leaders in cardiovascular disease.
Summary
This chapter has been to illuminate the medical, surgical and pharmaceutical advances that have been huge in the last 30 years. It is a story that has been highly enriched by biomedical engineering, and that improved life expectancy.
Chapter 6: Genomics
Introduction
An introduction to molecular biology and biochemistry with the focus on DNA would not be complete without the following inclusion of Stent and Delbruck at the beginning, and overlapping the seminal work of Watson and Crick. Although Delbruck came under the influence of Niels Bohr, the importance of his work with Lise Meitner was new to me. My own introduction was instigated by my reading of both Stent and of Schroedinger, who are mentioned here.
In the chapter that follows, we are introduced to the controversy that accompanied the awarding of the Nobel Prize to Francis Crick and James Watson for the unlocking of the genetic code. DNA is the molecule that carries most of the genetic instructions used in the development, functioning and reproduction of all known living organisms and many viruses. DNA is a nucleic acid; alongside proteins and carbohydrates, nucleic acids compose the three major macromolecules essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix. The two DNA strands are known as polynucleotides since they are composed of simpler units called nucleotides.[1] Each nucleotide is composed of a nitrogen-containing nucleobase —either cytosine (C), guanine (G), adenine (A), or thymine (T) — as well as a monosaccharide sugar called deoxyribose and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. According to base pairing rules (A with T, and C with G), hydrogen bonds bind the nitrogenous bases of the two separate polynucleotide strands to make double-stranded DNA.
Unrecognized was the huge contribution made by Rosalind Franklin, who died of cancer prior to the Nobel Prize award nomination in 1953. There are also two giant figures of this period who are not explored in this chapter.
Gunther S. Stent was Graduate Professor of Molecular Biology at the University of California, Berkeley.
Born: March 28, 1924, Berlin, Germany
Died: June 12, 2008, Haverford, PA
GUNTHER S. STENT March 28, 1924–June 12, 2008 BY SAMUEL H. BARONDES
Gunther Stent’s professional interests progressed in stages from the simple to the complex: from physical chemistry to molecular biology to neuroscience to philosophy. One feature remained constant: his gift for writing about his ideas in well-crafted prose. Born into a prosperous and assimilated Jewish family in Treptow, a suburb of Berlin, Stent’s childhood was disrupted by a series of traumatic events that began when he was nine. First, the Nazis came to power and the persecution of Jews began. Shortly thereafter, his chronically depressed mother, Elli, was hospitalized in a psychiatric sanitarium, and subsequently committed suicide. By 1938 in the aftermath of Kristallnacht, his father, Georg, fled to London to escape the Gestapo, and the 14-year-old Gunther joined him later after illegally crossing the border into Belgium. By the age of 16 Gunther had made it to Chicago, where he moved in with his married sister, Claire. Matriculated as a freshman at Hyde Park High, Stent worked furiously to make up for lost time. By taking extra courses and going to summer school he managed to graduate in 21 months. In the process he came under the influence of his composition teacher, Miss Rubovits, who taught him how to write, and to whom he always remained grateful.
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/stent-gunther.pdf
A professor emeritus of molecular and cell biology at the University of California, Berkeley, Stent was among the handful of scientists who after World War II pioneered the discipline of molecular biology, a field that essentially reduced biology to the study of chemical and physical interactions in and between cells.
Along with James Watson and Francis Crick, he was part of the original “phage group,” an informal club of scientists who tackled the mysteries of DNA and the gene in the 1950s and ’60s. Watson and Crick later won the Nobel Prize for discovery of the structure of DNA.
“Gunther was part of the intellectual glue that kept this small band of pioneers together,” said Michael Botchan, co-chair and professor in UC Berkeley’s Department of Molecular and Cell Biology.
A polymath, Stent was known not only for his studies on the metabolism of bacteria and neurobiology of leeches, but also for his writing on the history and philosophy of biology. For many years, he taught a freshman seminar on consciousness, and he wrote a 2002 book, “Paradoxes of Free Will,” that won the 2002 John F. Lewis Award of the American Philosophical Society. He also published books on morality as a biological phenomenon, prematurity in science and the end of biology.
http://www.berkeley.edu/news/media/releases/2008/06/17_stentobit.shtml
Gunther Stent credited his interest in biology to the fact that he met Sol Spiegelman at a party in 1945. Stent was a graduate student at the University of Illinois, where Spiegelman—who would go on to develop nucleic acid hybridization and win a Lasker Award for other work—was a visiting seminar speaker. Stent read one of Spiegelman’s papers. “On the fi rst two pages of that paper I was amazed to fi nd an inelegant derivation of the same standard equations which, in my sophomore year, I had to derive in a few minutes on an exam in the Doc’s physical chemistry course”, Stent later recalled in his self-published 1998 memoir, Nazis, Women and Molecular Biology. He asked a friend: “Wouldn’t microbiology be a good fi eld for me to get into if it takes so little to have a paper published?” Stent’s memoir, and his life, was full of that kind of self deprecation. (His memoir is also fi lled with a seemingly endless list of women he pursued and eventually lost.) Born Gunther Siegmund Stensch in Berlin, in 1924, he had emigrated to the USA when he was 14 years old. Landing in Chicago, he earned a bachelor’s degree in chemistry from the University of Illinois in 1945, and then began his graduate studies, with a year spent screening technical documents in Germany after the war.
http://www.thelancet.com/pdfs/journals/lancet/PIIS0140673608610594.pdf
After meeting Spiegelman, he read Erwin Schrodinger’s What is Life? Like Seymour Benzer the book led him to Max Delbruck’s laboratory at Caltech, in Pasadena, on a postdoctoral fellowship. There and at Cold Spring Harbor Laboratory, where he took Delbruck’s famous phage biology course, he was surrounded by other like-minded scientists who would become giants in the burgeoning field of molecular biology: James Watson, Salvador Luria, Alfred Hershey, and Renato Dulbecco.
Stent’s first project was an attempt to figure out why a particular bacteriophage, strain T4, did not attach to its bacterial host unless it came into contact with tryptophan. In 1952, he moved to the University of California, Berkeley. He used radio labelled bacteriophage to confirm DNA’s double helix structure in 1954, a year after Watson and Francis Crick published their famous report. In 1957, he helped found the school’s department of virology. In 1963, Stent wrote Molecular Biology of Bacterial Viruses, which Watson told The New York Times was “the textbook that became the most exciting tool for the study of molecular genetics following the finding of the double helix”. He trained a number of leading scientists, including Sydney Brenner, who shared the 2002 Nobel Prize in Medicine or Physiology for his work on developmental genetics. Over the next decades, he turned his attention to philosophy. He argued in The Coming of the Golden Age: A View of the End of Progress that scientists had learned everything they could about molecular biology. When John Horgan, author of The End of Science, interviewed him in 1992, he acknowledged that biologists still had a lot to learn. “But I think the big picture is basically over”, he said. Evolutionary biology in particular “was over when Darwin published The Origin of Species”. Many of his colleagues, of course, disagreed. He also studied neuroscience, using the leech as a model. (He also shared a patent on hementin, an anticoagulant derived from leeches.) One of his most-cited papers was a 1973 study of what happens at the synapse during learning (Proc Natl Acad Sci USA 1973; 70: 997–1001). Stent wrote or edited several other books, including the reissue of Watson’s The Double Helix: A Personal Account of the Discovery of the Structure of DNA, and Phage and the Origins of Molecular Biology. His 2002 book Paradoxes of Free Will win the 2002 John F Lewis Award of the American Philosophical Society.
http://www.thelancet.com/pdfs/journals/lancet/PIIS0140673608610594.pdf
Max Delbruck
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1969/delbruck-bio.html
Among his friendships during the later student years, the most intense and influential one was with Werner Brock, now emeritus Professor of Philosophy, Freiburg.
There followed three postdoctoral years (1929-1932) abroad, in England, Switzerland, and Denmark. The stay in England, with its immersion into a new language and a new culture, had a vast effect on widening his outlook on life. In Switzerland and Denmark the associations with Wolfgang Pauli and Niels Bohr shaped his attitude toward the pursuit of truth in science.
Delbrück’s interest in biology was first aroused by Bohr, in connection with his speculations that the complementarity argument of quantum mechanics might have wide applications to other fields of scientific endeavor and especially in regard to the relations between physics and biology. A move to Berlin in 1932, as assistant to Lise Meither, was largely motivated by the hope that the proximity of the various Kaiser Wilhelm Institutes to each other would facilitate the beginning of an acquaintance with the problems of biology. Paradoxically, this good intention was helped by the rise of Nazism which made official seminars less interesting. A small group of physicists and biologists began to meet privately beginning about 1934. To this group belonged N. W. Timofeeff-Ressovsky (genetics). Out of these meetings grew a paper by Timofeeff, Zimmer, and Delbrück on mutagenesis. A popularization of this paper of 1935 in Schroedinger‘s little book «What is Life?» (1945) had a curiously strong influence on the development of molecular biology in the late 1940’s.
The move to the United States in 1937 was made possible by a second fellowship of the Rockefeller Foundation, permitting Delbrück to pursue with greater freedom and effectiveness his interests in biology. He chose Caltech because of its strength in Drosophila genetics, and to some extent because of its distance from the impending perils at home. Although his job in Germany seemed reasonably secure, it was clear that political reasons would bar him from advancement.
Delbrück, Max. Interview by Carolyn Harding. Pasadena, California, July 14- September 11, 1978. Oral History Project, California Institute of Technology Archives. Retrieved [supply date of retrieval] from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Delbruck_M
Nobel Prize: “for their discoveries concerning the replication mechanism and the genetic structure of viruses”
Interview in 1978 with Max Delbrück, professor of biology emeritus, begins with his recollections of growing up in an academic family in Berlin. Trained at Göttingen in the late 1920s as a theoretical physicist, he later switched to biology, inspired by Niels Bohr to investigate the applications of complementarity to biological phenomena. After postgraduate work at Bristol and Copenhagen, he returned to Berlin in 1932 to work for Lise Meitner and formed a “club” of theoretical physicists, biologists, and biochemists, who met for discussions at his mother’s house.
Recollections of the advent of the Nazis in 1933. In 1937 Delbrück left Berlin for Caltech on a Rockefeller Fellowship; he defends the decision of other German scientists, notably Heisenberg, to remain in Germany. At Caltech he began working in Drosophila genetics but quickly shifted to phage work with Emory Ellis. Moved to Vanderbilt University in 1940, where he remained for seven years; comments on Oswald Avery’s identification of DNA as the “transforming principle.”
Recalls his association with Salvador Luria and summer phage group at Cold Spring Harbor in the 1940s; joint letter with Linus Pauling to Science in 1940 on intermolecular forces in biological processes; his http://resolver.caltech.edu/CaltechOH:OH_Delbruck_M reaction to 1945 publication of Erwin Schrödinger’s What is Life? Returned to Caltech in 1947 as professor of biology; comments on activities of Biology Division under chairmen George W. Beadle and Ray Owen, and the psychobiology of Roger Sperry. Recalls 1953 Watson-Crick discovery of the structure of DNA; comments on Watson as director of Cold Spring Harbor and on The Double Helix. Comments on receiving (with Luria and Alfred Hershey) the 1969 Nobel Prize in Physiology or Medicine.
Summary
It is important to realize the impact of breaking the genetic code, a seminal event in the 20th century. It changed the course of biochemistry for the remainder of the century, eventually leading to the “human genome project.” But the story is incomplete as we shall see the mapping of translation of the code into protein, and the discovery of noncoding genes, the role of protein and of RNA in the regulation of cell metabolic pathways. It is of great interest that the early work in molecular biology focused on the virus, a non-metabolizing carrier of either DNA or RNA, and on the effect of radiation on mutagenesis. The chapter is followed by the studies of RNA. The emergence of molecular biology in this century has uncovered important revisions in our comprehension of transcription and more importantly, cellular metabolic regulation. The genetic code is only an imprint to be transmitted from one generation to the next. The metabolism and its adaptation in the life of an organism can’t be understood without and understanding of RNA and proteomics in relationship to very fast changes in the environment.
Chapter 7: The RNAs
Introduction
The classical model holds that DNA is transcribed from complementary mRNA to rRNA, with protein synthesis in the ribosome. There is also a non-nuclear, mitochondrial DNA. The classical role of RNA is transcription. A revised modern hypothesis is found in the discoveries of RNA in inhibition of transcription, and having a role in cell signaling and regulatory processes, as explained in the following discussion.
Summary
The RNA story has become a fascinating discovery of the emergence of biochemistry, regulation of metabolic pathways, and signaling pathways. This opens a reawakening of biochemistry to the possibility, with the help of powerful separation and analytical technology to a close observation of the living cell.
Chapter 8: Proteomics, Protein-folding, and Cell Regulation
Introduction
The functioning of the living cell depends on the structure and function of proteins, glycoproteins, and lipoproteins. These are embedded in the cell membrane, which has continuity between the extracellular membrane and intracellular structures. The functioning protein domain has a subset called enzymes, which are involved in catalytic activities. These reside within the cytoplasm, at cell junctions, in the mitochondria, and on cell surfaces. They are essential to the functioning of the differentiated cell and essential to the interaction of the cell with its extracellular matrix. This encompasses the discussions in the chapter that follows.
Summary
Proteomics, Protein-folding, and Cell Regulation
A mapping of the human proteome has been done for some eukaryotes, and is incomplete for the human case. It is important to recognize that there are numerous instances of protein “isoforms” that are bio-similars that nuance cell function in animals and man. This has a significant linkage to both organ differentiation and to evolutionary changes. The developments in proteomics have been huge because of continuing work in instrumentation and in mathematical algorithms that feed into a tie between proteomics and phenotypes. There is still much more to be done in the identification of cardiovascular disease and cancer biomarkers, and in addition infectious disease and the exploding work on the microbiome.
Introduction
The story of protein folding was highlighted by the work of Jakob and Monod. It was a gateway to understanding metabolism. This was a game opener. Who would have predicted the discoveries that followed? That is the material to be found in this chapter.
Summary
Protein folding has become a gateway to understanding biochemistry, metabolism and physiology, and importantly, is a gateway to the understanding of a group of transmissible diseases – such as Kuru and JCD. That is still a beginning because it now appears that protein folding, by way of prions, even though it has a relationship to disease by way of tau protein and amyloid, it has a relationship to cognitive function. This work has an important future.
Chapter 9: Neuroscience
Introduction
Several chapters that follow are not unrelated. They envision an evolving understanding of medicine that is emerging from discoveries in the functioning of the midbrain that are critical for cognitive function, and for endocrine regulation that resides in the pituitary gland, but is in feedback regulation through the amygdala.
Summary
These chapters have covered major contributions to the related fields of neurobiology, psychiatry, and medicine as an integrated physiological unit as not previously understood. Major contributors to this understanding, still in infancy have been presented. A beginning construction of the mind-body concept has been made.
Chapter 10: Microbiology & Immunology
Introduction
This chapter contains selected articles covering important discoveries in immunology and microbiology. These include the current work on the “Gut Microbiome”, the emergence of modified surgical mastectomy based on the regional lymph node metastasis, the developments in modern pathology to a much more diverse treatment of diseases and methods, the emergence of hematology as a specialty from which oncology diverged, and the T-cell mediated immune response.
Summary
This chapter has highlighted some important concepts in microbiology and virology, in cancer of blood and solid tumors, at least with respect to lymph node resection, and the elucidation of T-cell mediated immunity. There has been a considerable recognition given to the leaders in these developments.
Chapter 11: Endocrine Hormones
Introduction
This chapter covers the major advances in our understanding of pituitary, thyroid, parathyroids, adrenal, pituitary-adrenal axis, the sex hormones, and the pancreas. It is a picture that has had enormous expansion in the last 25 years. It is a good reason for the development of the medical subspecialty of endocrinology, and the further specialization in diabetes mellitus. It is not coincidental in ties to head and neck surgery.
Summary
This chapter has recognized important work with respect to obesity, and individuals who have made notable contributions. In addition, there has been seminal work on the gene retinoid receptor that is tied to the synthesis of a group of fatty soluble hormones, such as, vitamins A and D, and more.
Endocrinology is a large and blossoming corner in the history of modern medicine. This chapter has illuminated the problems and identified significant figures in the development of the knowledge of this field.
Chapter 12: Stem Cells
Introduction
This chapter contains descriptions of some of the most exciting work ongoing in regenerative biology, standing out as an achievement in developmental biology. There is seminal work in the discovery of the stem cell, which has been akin to the philosopher’s stone, except that there is such a transition state. The story goes further and reaches into the genetic engineering of cells by reprogramming, and the discovery of CRISPER.
Summary
We have seen some major research that is ongoing and not yet complete with respect to stem cells, cancer, reprogramming of mature cells in tissue engineering, CRISPER/Cas mediated genome engineering, and targeted gene modification, and the scientist who have led in this novel research.
Chapter 13: 3D Printing and Medical Application
Introduction
3-D Printing and its applications is a new endeavor that includes nonmedical invention as well as medical applications. The work is rapidly evolving and it constitutes an arena for tissue engineering, drug dosing and printing and artificial organ production and design.
Summary
We have reviewed the development of a whole new field of tissue engineering that will have a role in the future of medical treatment. Developments in this endeavor will also involve a science of nanotechnology.
Chapter 14: Synthetic Medicinal Chemistry
Introduction
This is a chapter that identifies major work in organic, inorganic, and medicinal chemistry
Summary to Part Two
The second part of this volume is more directed at the growth of remarkable discoveries in the health related sciences since the late-20th century. There have been observations that discovery has slowed. I cannot share such a view. It has become difficult to follow the rapid progress that is achieved in a step-by-step order. There is always reference to “serendipitous” discoveries, but for such an event it requires a prepared mind. A problem that has existed in the reliance on large funding for so much of research and the implementation using mathematics, computers, and advanced spectroscopy for discovery, is that there is a significant skew to the direction of research, and in the current state of expenditure it is more difficult for young investigators to enter with new ideas. Perhaps it has always been that way, but the scope of the work needed is much larger than ever before.
Volume Summary and Conclusions
This series of articles follows an earlier volume on scientific discoveries of the late 19th and 20th centuries. However, it is noteworthy to consider that the lifetime achievements recognized in the first decade of the 21st millennium reach back to an accumulation of half a century of sustained research. These articles provide a significant amount of insight and background to understanding the motivations of the contributors over a productive lifetime, and also confirms the repeated observation of influential exposures to other innovators. The material contains interviews with investigators, peer comments about their mentoring of young investigators, and also some very interesting background on childhood experiences. The biographical content is as interesting as the discoveries and honors discussed.
EPILOGUE
The second volume of the discoveries in medical and biological sciences series identifies many heroes of our time, just as it describes a trend of development in the related or supporting professions. The relationships have not always been clear, but a more integrated structure is emerging. The future of medical research and the practice of medicine with be more highly dependent on integrated work of professionals who have complementary skills. This is a challenge for current and future education.
Volume Two
Autor, redactor y editor:
Medical Scientific Discoveries for the
21st Century
&
Interviews with Scientific Leaders
On Amazon.com since 09/12/2017
https://www.amazon.com/dp/B078313281