• Home
  • 2.0 LPBI Executive Summary
  • 1.0 LPBI Executive Summary
  • Journal PharmaceuticalIntelligence.com
  • Portfolio of IP Assets
  • Knowledge PORTALS System (KPS)
  • 1.0 LPBI – 2012-2020 VISTA
  • LPBI Group’s History
  • 2.0 LPBI – 2021-2025 VISION
  • BioMed e-Series
  • Press Coverage
  • Investor Relations
  • Our TEAM
  • Founder
  • Funding, Deals & Partnerships
  • 1.0 LPBI Group News
  • 1.0 LPBI CALENDAR
  • 2.0 LPBI Group News
  • Testimonials about LPBI
  • DrugDiscovery @LPBI Group
  • Medical 3D Printing
  • e-VOICES Podcasting
  • LPBI Newsletters
  • Customer Surveys
  • Health Care INVESTOR’s Corner ($)
  • 2021 Summer Internship Portal
  • 2021-2022 Medical Text Analysis (NLP)
  • Artificial Intelligence: Genomics & Cancer
  • SOP Web STAT
  • Blockchain Transactions Network Ecosystem
  • Contact Us
  • 1.0 LPBI Brochure
  • 2.0 LPBI Brochure
  • 2.0 LPBI – Calendar of Zooms
  • Coronavirus, SARS-CoV-2 Portal
  • LPBI India
  • Synthetic Biology in Drug Discovery
  • Certificate One Year
  • NFT: Redefined Format of IP Assets
  • Audio English-Spanish: BioMed e-Series
  • Five Bilingual BioMed e-Series
  • Press Releases
  • Intangibles CIM
  • ChatGPT + Wolfram PlugIn
  • Medicine with GPT-4 & ChatGPT

Leaders in Pharmaceutical Business Intelligence (LPBI) Group

Funding, Deals & Partnerships: BIOLOGICS & MEDICAL DEVICES; BioMed e-Series; Medicine and Life Sciences Scientific Journal – http://PharmaceuticalIntelligence.com

Feeds:
Posts
Comments

NEW GENRE Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery – Series C, Volume 2

 

View on Amazon.com

https://www.amazon.com/dp/B0BQTM44SM

Audio y Texto

  • NEW GENRE Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery 

https://pharmaceuticalintelligence.com/audio-english-spanish-biomed-e-series/new-genre-audio-english-spanish-series-c-e-books-on-cancer-oncology/new-genre-volume-two-cancer-therapies-metabolic-genomics-interventional-immunotherapy-and-nanotechnology-in-therapy-delivery-series-b-volume-2%ef%bf%bc/

 

  • Original Volume 2: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2).

 

On com since 5/18/2017

http://www.amazon.com/dp/B071VQ6YYK

 

  • NEW GENRE Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery

https://pharmaceuticalintelligence.com/audio-english-spanish-biomed-e-series/new-genre-audio-english-spanish-series-c-e-books-on-cancer-oncology/new-genre-volume-two-cancer-therapies-metabolic-genomics-interventional-immunotherapy-and-nanotechnology-in-therapy-delivery-series-b-volume-2%ef%bf%bc/

 

This volume has the following three parts:

 

PART A: The eTOCs in Spanish in Audio format

PART B: The eTOCs in Bi-lingual format: Spanish and English in Text format

PART C: The Editorials of the original e-Book in English in Audio format

 

PART A:

The eTOCs in Spanish in Audio format

 

Serie C: libros electrónicos acerca del cáncer y la oncología

 

Consultor de contenidos de la serie C: Larry H. Bernstein, MD, FCAP

  

SEGUNDO VOLUMEN

Tratamientos contra el cáncer:

Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos

 

Traducción a español

Montero Language Services

(Libro 2 de la serie C) en Amazon.com desde el 18/05/2017

2017

http://www.amazon.com/dp/B071VQ6YYK

 

Autores, redactores y editores

Larry H Bernstein, MD, FCAP

larry.bernstein@gmail.com

y

Stephen J Williams, PhD

sjwilliamspa@comcast.net

 

Autores y redactores invitados

Tilda Barliya, PhD, tildabarliya@gmail.com

Demet Sag, PhD, demet.sag@gmail.com

Dror Nir, PhD, dror.nir@radbee.com

Ziv Raviv, PhD zraviv06@gmail.com

Danut Dragoi, PhD, Danut.daa@gmail.com

Evelina Cohn, PhD, ecohn2011@yahoo.com

Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu

Leaders in Pharmaceutical Business Intelligence, Boston

 

Aviva Lev-Ari, PhD, RN

Redactora jefe de la serie de libros electrónicos BioMed

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

 

ENLACE a otros libros electrónicos sobre el cáncer en Amazon.com de nuestro equipo

Biología del cáncer y genómica para el diagnóstico de la enfermedad

(Libro 1 de la serie C) en Amazon.com desde el 11/08/2015

2015

Traducción a español

Montero Language Services

http://www.amazon.com/dp/B013RVYR2K

Stephen J. Williams, PhD editor principal

sjwilliamspa@comcast.net

Tilda Barliya, PhD, editora

tildabarliya@gmail.com

Ritu Saxena, PhD, editora

ritu.uab@gmail.com

  

Leaders in Pharmaceutical Business Intelligence, Boston

 

Aviva Lev-Ari, PhD, RN

Redactora jefe de la serie de libros electrónicos BioMed

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

  

 

SEGUNDO VOLUMEN

Tratamientos contra el cáncer:

Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos

Indice de contenidos electrónico (IDCe)

Los enlaces indicados llevan al contenido original en inglés

MD Licenciado/a en medicina y cirugía (Estados Unidos)
PhD Doctorado/a
RN Enfermero/a titulado/a (National Board of Nursing Registration)
FCAP Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos
Ph.D Doctorado/a
CRA CRA
GCP GCP

 

PREFACIO por Larry H. Bernstein, MD, FCAP

 

Introducción a los tratamientos antineoplásicos por Larry H. Bernstein, MD, FCAP

 

Primera parte:

Farmacoterapia dirigida genómica y metabólica del cáncer

Capítulo 1:        Mirando en las profundidades del metaboloma del cáncer

 

Introducción

 

1.1     Nuevos métodos para el estudio de la replicación, el crecimiento y la regulación celular

https://pharmaceuticalintelligence.com/2015/03/25/new-methods-for-study-of-cellular-replication-growth-and-regulation

Larry H. Bernstein, MD, FCAP

 

1.2     Genómica y epigenética: errores genéticos y metodologías en el cáncer y otras enfermedades

https://pharmaceuticalintelligence.com/2015/03/25/genomics-and-epigenetics/

Larry H. Bernstein, MD, FCAP

 

1.2.1 Roturas bicatenarias del ADN

https://www.nature.com/articles/nbt.3101 https://doi.org/10.1038/nbt.3101

Richard L Frock, et al

 

1.2.2  iARN: acerca de la transcripción y el control metabólico

https://pharmaceuticalintelligence.com/2015/03/26/rnai/

Larry H. Bernstein, MD, FCAP

 

1.2.3  CRISPR/Cas9: aportaciones sobre la estructura y la función de las endorribonucleasas, su papel en la inmunidad y sus aplicaciones en la ingeniería genómica

https://pharmaceuticalintelligence.com/2015/03/27/crisprcas9/

Larry H. Bernstein, MD, FCAP

 

1.2.4  La perspectiva metabólica de la expresión epigenética

https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/

Larry H. Bernstein, MD, FCAP

 

1.2.5  Cómo «agarran» las células cancerosas a sus vecinas y las «atrapan»

https://pharmaceuticalintelligence.com/2016/02/07/how-cancer-cells-grab-neighbors-and-reel-them-in/

Larry H. Bernstein, MD, FCAP

 

1.2.6  Troncalidad del cáncer colorrectal y ERK

https://pharmaceuticalintelligence.com/2016/02/06/colorectal-cancer-stemness-and-erk/

Larry H. Bernstein, MD, FCAP

 

1.3     Oncología pediátrica

 

1.3.1  Neuroblastoma: una revisión

https://pharmaceuticalintelligence.com/2013/06/01/neuroblastoma-a-review/

Tilda Barliya, PhD

 

1.3.2 El origen genético de la leucemia linfoblástica aguda (LLA) infantil

https://pharmaceuticalintelligence.com/2013/03/20/the-genetic-origin-of-childhood-acute-lymphoblastic-leukemia-all/

Aviva Lev-Ari, PhD, RN

 

1.3.3  Leucemia linfoblástica aguda y trasplante de médula ósea

https://pharmaceuticalintelligence.com/2013/03/27/acute-lymphoblastic-leukemia-and-bone-marrow-transplantation/

Tilda Barliya, PhD

 

Resumen

 

Capítulo 2:        Encontrando la desregulación en las células cancerosas

 

Introducción

 

2.1     Revisión del efecto Warburg

https://pharmaceuticalintelligence.com/2015/03/30/warburg-effect-revisited-2/

Larry H. Bernstein, MD, FCAP

 

2.1.2  Refinando la hipótesis de Warburg

https://pharmaceuticalintelligence.com/2015/04/01/refined-warburg-hypothesis-2-1-2/

Larry H. Bernstein, MD, FCAP

 

2.1.3  El efecto Warburg y la regulación mitocondrial

https://pharmaceuticalintelligence.com/2015/04/01/warburg-effect-and-mitochondrial-regulation-2-1-3/

Larry H. Bernstein, MD, FCAP

 

2.1.4  La acumulación de 2-hidroxiglutarato no sirve como biomarcador de la progresión maligna de los gliomas de bajo grado con mutación de IDH 

https://pharmaceuticalintelligence.com/2015/10/08/accumulation-of-2-hydroxyglutarate-is-not-a-biomarker-for-malignant-progression-of-idh-mutated-low-grade-gliomas/

Larry H. Bernstein, MD, FCAP

 

2.1.5  Isocitrato··deshidrogenasa mitocondrial (IDH) y variantes

https://pharmaceuticalintelligence.com/2015/04/02/mitochondrial-isocitrate-dehydrogenase-and-variants/

Larry H. Bernstein, MD, FCAP

 

2.1.6  Nucleótidos de piridina mitocondriales y la cadena de transporte de electrones

https://pharmaceuticalintelligence.com/2015/04/03/mitochondrial-pyridine-nucleotides-and-electron-transport-chain-2-1-5/

Larry H. Bernstein, MD, FCAP

 

2.1.7  Autofagia 

https://pharmaceuticalintelligence.com/2015/04/03/autophagy/

Larry H. Bernstein, MD, FCAP

 

2.2     Nuevos conocimientos sobre el efecto Warburg

https://pharmaceuticalintelligence.com/2015/08/05/new-insights-on-the-warburg-effect-2-2/

Larry H. Bernstein, MD, FCAP

 

2.2.1  Implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg

https://pharmaceuticalintelligence.com/2015/06/03/therapeutic-implications-for-targeted-therapy-from-the-resurgence-of-warburg-hypothesis/

Larry H. Bernstein, MD, FCAP

 

2.2.2  Papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer

https://pharmaceuticalintelligence.com/2015/10/08/role-of-nanobiotechnology-in-developing-personalized-medicine-for-cancer-3-1/

Larry H. Bernstein, MD, FCAP

 

2.2.3  El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada

https://pharmaceuticalintelligence.com/2015/10/08/the-her-2-receptor-and-breast-cancer-ten-years-of-targeted-anti-her-2-therapy-and-personalized-medicine-3-3/

Larry H. Bernstein, MD, FCAP

 

2.2.4  La medicina personalizada aún no ha llegado

https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/

Larry H. Bernstein, MD, FCAP

 

2.2.5  Biomarcadores para la oncología personalizada: avances recientes y futuros retos 

https://pharmaceuticalintelligence.com/2015/10/08/biomarkers-for-personalized-oncology-recent-advances-and-future-challenges-3-5/

Larry H. Bernstein, MD, FCAP

 

2.2.6  Oncología personalizada: avances recientes y futuros retos

https://pharmaceuticalintelligence.com/2015/10/09/personalized-oncology-recent-advances-and-future-challenges-3-6/

Larry H. Bernstein, MD, FCAP

 

2.2.7  Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer

https://pharmaceuticalintelligence.com/2015/10/09/pharmacogenomic-biomarkers-for-personalized-cancer-treatment-3-7/

Larry H. Bernstein, MD, FCAP

 

2.2.8  Límites de la predicción en la medicina personalizada: una visión general

https://pharmaceuticalintelligence.com/2015/10/09/limits-to-forecasting-in-personalized-medicine-an-overview-3-8/

Larry H. Bernstein, MD, FCAP

 

2.2.9  La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida

https://pharmaceuticalintelligence.com/2015/10/09/the-genome-editing-toolbox-a-spectrum-of-approaches-for-targeted-modification/

Larry H. Bernstein, MD, FCAP

 

2.2.10         El camino hacia la medicina personalizada

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

2.3     Patología molecular de la progresión del cáncer

 

2.3.1  Modelo halstediano de la progresión del cáncer

https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/

Larry H. Bernstein, MD, FCAP

 

2.3.2  La patología molecular de la progresión del cáncer de mama

https://pharmaceuticalintelligence.com/2013/01/10/the-molecular-pathology-of-breast-cancer-progression/

Tilda Barliya, PhD

 

2.3.3  Enfermedades metastásicas

https://pharmaceuticalintelligence.com/2015/05/01/metastatic-disease-4-3/

Larry H. Bernstein, MD, FCAP

 

2.3.4  CD47: tratamiento antineoplásico dirigido

https://pharmaceuticalintelligence.com/2013/05/07/cd47-target-therapy-for-cancer/

Tilda Barliya, PhD

 

2.3.5  Cáncer de colon

https://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/

Tilda Barliya, PhD

 

2.3.6  Cáncer renal: relación entre el metabolismo en el ciclo de Krebs y la modulación de las histonas

https://pharmaceuticalintelligence.com/2015/10/14/renal-kidney-cancer-connections-in-metabolism-at-krebs-cycle-through-histone-modulation/

Demet Sag, Ph.D., CRA, GCP

 

2.3.7  Síndrome mielodisplásico y leucemia mieloide aguda tras la quimioterapia adyuvante

https://pharmaceuticalintelligence.com/2015/10/12/myelodysplastic-syndrome-and-acute-myeloid-leukemia-following-adjuvant-chemotherapy/

Larry H. Bernstein, MD, FCAP

 

2.3.8  Metástasis en los ganglios linfáticos

https://pharmaceuticalintelligence.com/2015/10/14/lymph-node-metastases/

Larry H. Bernstein, MD, FCAP

 

2.3.9  ¿Especies reactivas de oxígeno en el cáncer de próstata?

https://pharmaceuticalintelligence.com/2015/10/15/reactive-oxygen-species-in-prostate-cancer/

Larry H. Bernstein, MD, FCAP

 

2.3.10         Glioma, glioblastoma y neurooncología

https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/

Larry H. Bernstein, MD, FCAP

 

2.4     Progresión del cáncer hematológico

 

2.4.1  Neoplasias hematológicas malignas

https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancies-table-of-contents-4-2-x/

Larry H. Bernstein, MD, FCAP

 

2.4.2  Clasificación de los cánceres hematológicos

https://pharmaceuticalintelligence.com/2015/08/11/hematological-cancer-classification-2-4/

Larry H. Bernstein, MD, FCAP

 

2.4.3  Diagnóstico de las neoplasias hematológicas malignas

https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancy-diagnostics-4-2-3/

Larry H. Bernstein, MD, FCAP

 

2.4.4  Tratamiento de las leucemias agudas

https://pharmaceuticalintelligence.com/2015/10/05/treatment-of-acute-leukemias/

Larry H. Bernstein, MD, FCAP

 

2.4.5  Tratamiento de las leucemias crónicas

https://pharmaceuticalintelligence.com/2015/08/11/treatment-for-chronic-leukemias-2-4-4b/

Larry H. Bernstein, MD, FCAP

 

2.4.6  Tratamiento de los linfomas

https://pharmaceuticalintelligence.com/2015/08/11/treatment-of-lymphomas-2-4-4c/

Larry H. Bernstein, MD, FCAP

 

2.4.7  Tratamientos para linfomas y leucemias

https://pharmaceuticalintelligence.com/2015/08/11/treatments-for-leukemias-and-lymphomas-4-2-5/

Larry H. Bernstein, MD, FCAP

 

2.4.8  Actualización sobre la leucemia mieloide crónica 

https://pharmaceuticalintelligence.com/2015/10/14/update-on-chronic-myeloid-leukemia/

Larry H. Bernstein, MD, FCAP

 

2.4.9  El cáncer de páncreas en la encrucijada del metabolismo

https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/

Demet Sag, Ph.D., CRA, GCP

 

2.4.10         Mejor medicación contra el cáncer

https://pharmaceuticalintelligence.com/2015/10/09/better-cancer-medication/

Larry H. Bernstein, MD, FCAP

 

Resumen

 

Capítulo 3:       Medicina personalizada contra el cáncer

 

Introducción

 

3.0     Medicina personalizada contra el cáncer: El testimonio de Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/05/12/personalized-medicine-in-cancer-3/

Larry H. Bernstein, MD, FCAP

 

3.1     El camino hacia la medicina personalizada

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

3.2     El papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer

https://pharmaceuticalintelligence.com/2015/10/08/role-of-nanobiotechnology-in-developing-personalized-medicine-for-cancer-3-1/

Larry H. Bernstein, MD, FCAP

 

3.3     El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada

https://pharmaceuticalintelligence.com/2015/10/08/the-her-2-receptor-and-breast-cancer-ten-years-of-targeted-anti-her-2-therapy-and-personalized-medicine-3-3/

Larry H. Bernstein, MD, FCAP

 

3.4     La medicina personalizada aún no ha llegado

https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/

Larry H. Bernstein, MD, FCAP

 

3.5     Biomarcadores para la oncología personalizada: avances recientes y futuros retos.

https://pharmaceuticalintelligence.com/2015/10/08/biomarkers-for-personalized-oncology-recent-advances-and-future-challenges-3-5/

Larry H. Bernstein, MD, FCAP

 

3.5.1  Firma de hipermetilación de ZNF154

https://pharmaceuticalintelligence.com/2016/02/05/znf154-hypermethylation-signature/

Larry H. Bernstein, MD, FCAP

 

3.6     Oncología personalizada: avances recientes y futuros retos

https://pharmaceuticalintelligence.com/2015/10/09/personalized-oncology-recent-advances-and-future-challenges-3-6/

Larry H. Bernstein, MD, FCAP

 

3.7     Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer

https://pharmaceuticalintelligence.com/2015/10/09/pharmacogenomic-biomarkers-for-personalized-cancer-treatment-3-7/

Larry H. Bernstein, MD, FCAP

 

3.8     Límites de la predicción en la medicina personalizada: una visión general

https://pharmaceuticalintelligence.com/2015/10/09/limits-to-forecasting-in-personalized-medicine-an-overview-3-8/

Larry H. Bernstein, MD, FCAP

 

3.9     La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida

https://pharmaceuticalintelligence.com/2015/10/09/the-genome-editing-toolbox-a-spectrum-of-approaches-for-targeted-modification/

Larry H. Bernstein, MD, FCAP

 

3.10   El camino hacia la medicina personalizada

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

3.11   Medicina personalizada y cáncer de colon

https://pharmaceuticalintelligence.com/2013/05/25/personalized-medicine-and-colon-cancer/

Tilda Barliya, PhD

 

3.12   Medicina personalizada: la iniciativa de California

https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/

Demet Sag, PhD, CRA, GCP

 

Resumen

 

 

Segunda parte:

Oncología intervencionista

Capítulo 4:        Cirugía

 

Introducción

 

4.1     Papel del sistema nervioso central en las metástasis del cáncer: estudio de los NIH

https://pubmed.ncbi.nlm.nih.gov/23599747/  DOI: 10.3892/ol.2013.1168

Sha Li 1, Yanlai Sun, Dongwei Gao

 

4.1.1  El dolor en las metástasis 

https://pharmaceuticalintelligence.com/2015/10/10/state-of-the-art-procedures-in-interventional-oncology/

Demet Sag, PhD, CRA, GCP

 

4.2     Tecnología de imagen en la cirugía del cáncer

https://pharmaceuticalintelligence.com/2015/08/05/imaging-technology-in-cancer-surgery/

Dror Nir, PhD

 

4.3     Enfermedades metastásicas: ejemplos de procedimientos quirúrgicos en el tratamiento del cáncer

 

4.3.1  Técnicas de ablación en la oncología intervencionista

https://pharmaceuticalintelligence.com/2015/08/05/ablation-techniques-in-interventional-oncology/

Dror Nir, PhD

 

4.3.2  Cánceres no hematológicos

https://pharmaceuticalintelligence.com/2015/05/01/nonhematological-cancers-4-2/

Larry H. Bernstein, MD, FCAP

 

4.3.3  Ejemplos de procedimientos quirúrgicos

https://pharmaceuticalintelligence.com/2015/05/02/examples-of-surgical-procedures-4-4/

Larry H. Bernstein, MD, FCAP

 

4.4     Procedimientos de vanguardia en la oncología intervencionista: ablación por radiofrecuencia, quimioembolización transarterial, ablación por microondas y electroporación irreversible (IRE)

https://pharmaceuticalintelligence.com/2015/10/10/state-of-the-art-procedures-in-interventional-oncology/

Larry H. Bernstein, MD, FCAP

 

4.4.1  Terapia fotodinámica a nanoescala

https://pharmaceuticalintelligence.com/2016/02/05/nanoscale-photodynamic-therapy/

Larry H. Bernstein, MD, FCAP

 

4.4.2  Alcalinización para bloquear la metástasis tumoral

https://pharmaceuticalintelligence.com/2016/02/05/alkalinizing-to-block-tumor-metastasis/

Larry H. Bernstein, MD, FCAP

 

4.5     Cuidados paliativos

https://pharmaceuticalintelligence.com/2015/05/14/palliative-care_4-6/

Larry H. Bernstein, MD, FCAP

 

Resumen

 

Capítulo 5:        Radioterapia

 

Introducción

 

5.1     Radioterapia de haz externo (EBRT) y braquiterapia

https://pharmaceuticalintelligence.com/2015/10/10/external-beam-radiation-therapy-and-brachytherapy/

Larry H. Bernstein, MD, FCAP

 

5.2     Tomografía fotoacústica

https://pharmaceuticalintelligence.com/2013/07/27/photoacoustic-tomography/

Tilda Barliya PhD

 

Capítulo 6:        Quimioterapia

 

Introducción del Dr. Stephen J. Williams, PhD

 

6.1     Fármacos citotóxicos

 

6.1.1  ¿Por qué la quimioterapia citotóxica sigue siendo un pilar fundamental de muchos regímenes de quimioterapia?

https://pharmaceuticalintelligence.com/2015/09/15/why-does-cytotoxic-chemotherapy-still-remain-a-mainstay-in-many-chemotherapeutic-regimens/

Stephen J. Williams, PhD

 

6.1.1.2        Nueva generación de compuestos platinados para eludir la resistencia

https://pharmaceuticalintelligence.com/2015/10/15/new-generation-of-platinated-compounds-to-circumvent-resistance/

Stephen J. Williams, PhD

 

6.1.1.3        Nuevos inhibidores de la topoisomerasa: agentes de origen natural

https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/

Stephen J. Williams, PhD

 

6.1.1.4        ¿Son los inhibidores de la ciclina D una buena diana?

https://pharmaceuticalintelligence.com/2015/10/14/are-cyclin-d-and-cdk-inhibitors-a-good-target-for-chemotherapy/

Stephen J. Williams, PhD

 

6.1.2  Timosina alfa1 y melanoma

https://pharmaceuticalintelligence.com/2013/02/15/thymosin-alpha1-in-melanoma/

Tilda Barliya, PhD

 

6.1.3  Paclitaxel: farmacocinética (FC), farmacodinámica (FD) y farmacogenómica (FG)

https://pharmaceuticalintelligence.com/2012/11/27/paclitaxel/

Tilda Barliya, PhD

 

6.1.4  Comparación entre paclitaxel y Abraxane (paclitaxel ligado a albúmina)

https://pharmaceuticalintelligence.com/2012/11/17/paclitaxel-vs-abraxane-albumin-bound-paclitaxel/

Tilda Barliya, PhD

 

6.1.5  Según un experto sobre el cáncer, la batalla debe reorientarse para adelantarse a la enfermedad

https://pharmaceuticalintelligence.com/2015/03/27/war-on-cancer-needs-to-refocus-to-stay-ahead-of-disease-says-cancer-expert/

Stephen J. Williams, PhD

 

6.1.6  Resistencia a los tratamientos citotóxicos: revisión actual

 

6.1.6.1        ¿Se puede considerar que la heterogeneidad intratumoral es un mecanismo de resistencia?

https://pharmaceuticalintelligence.com/2015/10/12/can-intratumoral-heterogeneity-be-thought-of-as-a-mechanism-of-resistance/

Stephen J. Williams, PhD

 

6.1.6.2        Las células madre del cáncer como mecanismo de resistencia

https://pharmaceuticalintelligence.com/2015/10/14/cancer-stem-cells-as-a-mechanism-of-resistance/

Stephen J. Williams, PhD

 

6.1.7  Nuevos inhibidores de la topoisomerasa en ensayos clínicos

https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/

Stephen J. Williams, PhD

 

6.2     Neoplasias hematológicas malignas

https://pharmaceuticalintelligence.com/2015/05/11/hematologic-malignancies-6-2/

Larry H. Bernstein, MD, FCAP

 

6.3     Tratamientos paliativos

 

6.3.1  Bifosfonatos y metástasis óseas

https://pharmaceuticalintelligence.com/2015/09/14/bisphosphonatesandbonemetabolism/

Stephen J. Williams, PhD

 

6.3.2 Transfusiones de sangre

https://pharmaceuticalintelligence.com/2015/10/10/blood-transfusions/

Larry H. Bernstein, MD, FCAP

 

6.3.3  Eritropoyetina

https://pharmaceuticalintelligence.com/2015/10/10/erythropoietin/

Larry H. Bernstein, MD, FCAP

 

6.3.4  G-CSF (factor estimulante de colonias de granulocitos)

https://pharmaceuticalintelligence.com/2015/10/10/granulocyte-colony-stimulating-factor-g-csf/

Larry H. Bernstein, MD, FCAP

 

6.3.5  Intercambio de plasma (plasmaféresis)

https://pharmaceuticalintelligence.com/2015/10/10/plasmapheresis/

Larry H. Bernstein, MD, FCAP

 

6.3.6  Transfusiones de plaquetas

https://pharmaceuticalintelligence.com/2015/10/10/platelet-transfusions/

Larry H. Bernstein, MD, FCAP

 

6.3.7  Esteroides, inflamación y tratamiento con CAR-T

https://pharmaceuticalintelligence.com/2015/09/14/steroids-inflammation-and-car-t-therapy/

Stephen J. Williams, PhD

 

6.3.8  Opioides, dolor y cuidados paliativos

https://pharmaceuticalintelligence.com/2015/09/14/opioids-pain-and-palliative-care/

Stephen J. Williams, PhD

 

Resumen

 

Tercera parte:

inmunoterapia, opciones de fármacos biológicos y terapias dirigidas al sistema inmunitario del paciente oncológico

Introducción por el Dr. Larry H Bernstein, MD, FCAP

Introduction by Dr. Larry H Bernstein, MD, FCAP

 

Capítulo 7:        Inmunoterapia basada en virus y vacunas

 

Introducción

 

7.1     Bacilo de Calmette-Guérin (BCG) para el cáncer superficial de vejiga

https://pharmaceuticalintelligence.com/2015/10/11/bacillus-calmette-guerin-bcg-for-superficial-bladder-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

7.2     Resultados del bacilo de Calmette-Guérin (BCG) para el cáncer de vejiga superficial

https://pharmaceuticalintelligence.com/2015/10/12/bacillus-calmette-guerin-bcg-for-superficial-bladder-cancer-2/

Demet Sag, PhD, CRA, GCP

 

7.3     Virus del papiloma para el cáncer cervicouterino

https://pharmaceuticalintelligence.com/2015/10/10/papilloma-viruses-for-cervical-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

7.4     Observaciones sobre el virus del papiloma humano y el cáncer

https://pharmaceuticalintelligence.com/2015/10/13/huamn-papilloma-virus-and-cancer/

Demet Sag, PhD, CRA, GCP

 

7.5     Inhibidor de la proteína NS5A del VHC de Theravance, Inc. para tratar la infección por el virus de la hepatitis C

https://pharmaceuticalintelligence.com/2015/11/03/hcv-ns5a-inhibitor-from-theravance-inc-to-treat-hepatitis-c-virus-infection/

Dr. Larry H Bernstein, MD, FCAP

 

7.6     La ERGE y el adenocarcinoma de esófago

https://pharmaceuticalintelligence.com/2015/10/10/gerd-and-esophageal-adenocarcinoma/

Dr. Larry H Bernstein, MD, FCAP

 

7.7     Helicobacter pylori

https://pharmaceuticalintelligence.com/2015/10/11/helicobacter-pylorum/

Dr. Larry H Bernstein, MD, FCAP

 

7.8     Virus y cáncer: un paseo por la memoria

https://pharmaceuticalintelligence.com/2015/10/12/viruses-and-cancer/

Demet Sag, PhD, CRA, GCP

 

7.9     En el nombre de la traducción: ¿Rebuscado? ¿Amigo o enemigo? De bacteria patógena alimentaria a convertirse en vacuna amiga

https://pharmaceuticalintelligence.com/2015/10/12/in-the-name-of-translation-is-it-a-far-fetch-friend-or-foe-from-a-food-born-pathogen-bacteria-to-become-a-friendly-vaccine/

Demet Sag, PhD, CRA, GCP

 

Capítulo 8:        Trasplante alogénico de células madre hematopoyéticas e injerto contra hospedador

  

8.1     Hematopoyesis

https://pharmaceuticalintelligence.com/2016/01/23/hematopoiesis/

Dr. Larry H Bernstein, MD, FCAP

 

8.2     Trasplante alogénico de células madre

https://pharmaceuticalintelligence.com/2015/05/14/allogeneic-stem-cell-transplantation-9-2/

Dr. Larry H Bernstein, MD, FCAP

 

8.3     Seguimiento de la LMA con un análisis de sangre de «células específicas»

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

Dr. Larry H Bernstein, MD, FCAP

 

8.4     La estrategia de Juno erradicó las células cancerosas en 10 de 12 pacientes con leucemia, lo que indica potencial para transformar el tratamiento de referencia en oncología

https://pharmaceuticalintelligence.com/2014/01/14/junos-approach-eradicated-cancer-cells-in-10-of-12-leukemia-patients-indicating-potential-to-transform-the-standard-of-care-in-oncology/

Aviva Lev-Ari, PhD, RN

 

Capítulo 9: Últimos avances en la inmunoterapia del cáncer

 

9.1     Inhibidores del punto de control

 

9.1.2  Artículos sobre «PD-L1»

 

9.1.2.1        Merck y Pfizer anuncian una alianza estratégica global sobre anticuerpos anti-PD-L1 para acelerar su presencia en la inmunooncología

https://pharmaceuticalintelligence.com/2014/11/17/merck-and-pfizer-announces-global-strategic-alliance-on-anti-pd-l1-to-accelerate-presence-in-immuno-oncology/

Aviva Lev-Ari, PhD, RN

 

9.1.2.2        Politerapia inmunooncológica: implicaciones para las grandes farmacéuticas

https://pharmaceuticalintelligence.com/2016/01/10/immuno-oncology-combination-therapy-implications-for-major-pharma/

Aviva Lev-Ari, PhD, RN

 

9.1.2.3        El inhibidor de PD1 atezolizumab puede ser prometedor frente al cáncer de vejiga en pacientes con alta expresión de PDL1

https://pharmaceuticalintelligence.com/2015/11/17/pd1-inhibitor-atezolizumab-may-show-promise-in-bladder-cancer-in-patients-with-high-pdl1-expression/

Stephen J. Williams, PhD

 

9.1.2.4        Conferencia sobre Inmunoterapia del Cáncer y Simposio sobre Biomarcadores para la Inmunoterapia del Cáncer, 6-11 de marzo de 2016 | Moscone North Convention Center | San Francisco, CA, EUA

https://pharmaceuticalintelligence.com/2015/10/13/cancer-immunotherapy-conference-biomarkers-for-cancer-immunotherapy-symposium-march-6-11-2016-moscone-north-convention-center-san-francisco-ca/

Aviva Lev-Ari, PhD, RN

 

9.1.2.5        Nuevos biomarcadores para la inmunoterapia del cáncer

https://pharmaceuticalintelligence.com/2015/10/10/novel-biomarkers-for-targeting-cancer-immunotherapy/

Dr. Larry H Bernstein, MD, FCAP

 

9.1.2.6        Nuevos hallazgos en el cáncer de endometrio: mutaciones, tipos moleculares y respuestas inmunitarias evocadas por los subtipos de cáncer de endometrio y ovario propensos a las mutaciones

https://pharmaceuticalintelligence.com/2015/06/02/new-findings-in-endometrial-cancer-mutations-molecular-types-and-immune-responses-evoked-by-mutation-prone-endometrial-ovarian-cancer-subtypes/

Aviva Lev-Ari, PhD, RN

 

9.1.2.7        Cáncer de páncreas: genética, genómica e inmunoterapia

https://pharmaceuticalintelligence.com/2013/04/11/update-on-pancreatic-cancer/

Tilda Barliya, PhD

 

9.2     Agentes coestimuladores

 

  • CD137/41BB
  • OX40
  • CD27
  • GITR
  • CD40

 

9.3     Inmunomoduladores

 

  • CTLA4
  • KIR
  • IDO IL-2
  • IL-21
  • CSF1R
  • Vacunas

 

9.3.1  Artículos sobre CTLA4, proteína 4 asociada a los linfocitos T citotóxicos

 

9.3.1.1        Inmunoterapia contra el cáncer

https://pharmaceuticalintelligence.com/2015/10/27/cancer-immunotherapy/

Dr. Larry H Bernstein, MD, FCAP

 

9.3.1.2        La inmunoterapia combinada anti-CTLA4 y anti-PD1 muestra resultados prometedores contra el melanoma avanzado

https://pharmaceuticalintelligence.com/2013/06/07/combined-anti-ctla4-and-anti-pd1-immunotherapy-shows-promising-results-against-advanced-melanoma/

Aviva Lev-Ari, PhD, RN

 

9.4     Antineoplásicos: cuatro clases de moléculas inmunooncológicas en desarrollo, incluidos los CAR-T

  • Fase de desarrollo,
  • Nombre del medicamento 
  • Nombre de la farmacéutica
  • Indicación de la enfermedad objetivo 

http://jpmorgan.metameetings.com/confbook/healthcare16/stash/misc/IO%20Combos.pdf

Stephen J. Williams, PhD

 

9.5     Señalización de CAR-T (linfocitos T con receptores de antígenos quiméricos) de quinta generación

9.5.1  Artículos sobre «CAR-T»

 

9.5.1.1        Los líderes en el campo de los CAR-T avanzan con esperanza y cautela

https://pharmaceuticalintelligence.com/2015/12/08/leaders-in-the-car-t-field-are-proceeding-with-cautious-hope/

Stephen J. Williams, PhD

 

9.5.1.2        Tratamiento de la leucemia con CAR-T

https://pharmaceuticalintelligence.com/2015/11/05/car-t-therapy-in-leukemia/

Dr. Larry H Bernstein, MD, FCAP

 

9.5.1.3      Una rosa, pero con espinas. Expertos en oncología debaten sobre los retos del tratamiento con linfocitos CAR-T.

https://pharmaceuticalintelligence.com/2015/09/19/rosas-to-like/

Dr. Larry H Bernstein, MD, FCAP

 

Capítulo 10:        Aptámeros e inhibidores peptídicos pequeños

 

10.1   Vacunas, péptidos pequeños, aptámeros e inmunoterapia [9]

https://pharmaceuticalintelligence.com/2015/05/12/vaccines-small-peptides-aptamers-and-immunotherapy-9

Dr. Larry H Bernstein, MD, FCAP

 

10.2   Inhibidores de la angiogénesis

https://pharmaceuticalintelligence.com/2015/05/15/angiogenesis_inhibitors/

Dr. Larry H Bernstein, MD, FCAP

 

10.3   Inhibidor de MDM2 para el tratamiento de los cánceres

https://pharmaceuticalintelligence.com/2016/01/23/mdm2-inhibitor-for-the-treatment-of-cancers/

Dr. Larry H Bernstein, MD, FCAP

 

10.4   El desarrollo de las tratamientos basados en ARNip para el cáncer

https://pharmaceuticalintelligence.com/2013/05/09/the-development-of-sirna-based-therapies-for-cancer/

Ziv Raviv, PhD

 

Capítulo 11:      Otras novedades

 

11.1   Pfizer apuesta mil millones de dólares en los agentes biológicos condicionalmente activos de BioAtla | BioAcceleration™ para agentes terapéuticos proteicos

https://pharmaceuticalintelligence.com/2015/12/14/pfizer-bets-1-billion-on-bioatla-conditionally-active-biologics-bioacceleration-for-protein-therapeutics/

Aviva Lev-Ari, PhD, RN

 

11.2   Expresión génica y mecanismos de resistencia inmunitaria adaptativa en el linfoma

https://pharmaceuticalintelligence.com/2015/10/20/gene-expression-and-adaptive-immune-resistance-mechanisms-in-lymphoma/

Dr. Larry H Bernstein, MD, FCAP

 

11.3   La delicada conexión entre la IDO (indolamina 2,3-deshidrogenasa) y la inmunooncología

https://pharmaceuticalintelligence.com/2013/08/04/the-delicate-connection-ido-indolamine-2-3-dehydrogenase-and-immunology/

Demet Sag, PhD, CRA, GCP

 

11.4   Nueva estrategia oncológica mediante el atrapamiento de fármacos

https://pharmaceuticalintelligence.com/2016/02/01/novel-oncologic-approach-by-drug-trapping/

Dr. Larry H Bernstein, MD, FCAP

 

11.5   Biomarcadores del cáncer

https://pharmaceuticalintelligence.com/2016/02/02/biomarkers-of-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

11.6   Actividad enzimática causante del cáncer

https://pharmaceuticalintelligence.com/2016/02/02/cancer-causing-enzyme-activity/

Dr. Larry H Bernstein, MD, FCAP

 

11.7   ADN basura y cáncer de mama

https://pharmaceuticalintelligence.com/2016/02/02/junk-dna-and-breast-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

11.8   Aptámeros y armazones

https://pharmaceuticalintelligence.com/2016/02/06/aptamers-and-scaffolds/

Dr. Larry H Bernstein, MD, FCAP

 

Cuarta parte:

Tratamientos hormonales

Capítulo 12:      Tratamiento hormonal selectivo

 

12.1   Tratamiento hormonal

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.2   Papel de la progesterona en la progresión del cáncer de mama

https://pharmaceuticalintelligence.com/2013/06/25/role-of-progesterone-in-breast-cancer-progression/

Tilda Barliya, PhD

 

12.3   Hormonas y diferentes tipos de cáncer de ovario

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.4   La quimioterapia comparada con el tratamiento hormonal en el cáncer de ovario resistente a platino y a paclitaxel: ensayo aleatorizado del grupo alemán del estudio Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) sobre el cáncer de ovario

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.5   ¿Regresan los antagonistas de CXCR4 a la quimioterapia contra el cáncer?

https://pharmaceuticalintelligence.com/2015/12/15/are-cxc4-antagonists-making-a-comeback-in-cancer-chemotherapy/

Stephen J. Williams, PhD

 

Quinta parte:

tratamientos alternativos

Capítulo 13:      Tratamientos complementarios y alternativos

 

13.1   Tratamientos complementarios y alternativos

https://pharmaceuticalintelligence.com/2015/05/02/complementary-and-alternative-medicine-therapies-9-3-2/

Dr. Larry H Bernstein, MD, FCAP

 

Sexta parte:

Nanotecnología, nanopartículas y administración de fármacos

Por Tilda Barliya, PhD

  

Capítulo 14:      Nanopartículas y administración de fármacos

 

14.1   Introducción a la nanotecnología en la administración de fármacos

https://pharmaceuticalintelligence.com/2012/09/28/introduction-to-nanotechnology-in-drug-delivery/

Tilda Barliya, PhD

 

14.1.1         Construcción de un sistema de administración de fármacos (DDS): elección de polímeros y principios activos 

https://pharmaceuticalintelligence.com/2012/10/04/building-a-drug-delivery-systemdds-choice-of-polymers-and-drugs/

Tilda Barliya, PhD

 

14.1.2         Factores que afectan a la FC del nanotransportador

https://pharmaceuticalintelligence.com/2012/10/09/factors-affecting-the-pk-of-the-nanocarrier/

Tilda Barliya, PhD

 

14.2   Detección y diagnóstico por imagen

 

14.2.1         Detección de una sola molécula por Philip Tinnefeld

https://pharmaceuticalintelligence.com/2013/09/24/single-molecule-detection-by-philip-tinnefeld/

Tilda Barliya, PhD

 

14.2.2         Mesotelina: un biomarcador de detección temprana del cáncer (por Jack Andraka)

https://pharmaceuticalintelligence.com/2013/04/21/mesothelin-an-early-detection-biomarker-for-cancer-by-jack-andraka

Tilda Barliya, PhD

 

14.2.3         Nanotecnología y resonancia magnética

https://pharmaceuticalintelligence.com/2012/10/17/nanotechnology-and-mri-imaging/

Tilda Barliya, PhD

 

14.2.4         Nanotecnología: detección y tratamiento del cáncer metastásico en los ganglios linfáticos

https://pharmaceuticalintelligence.com/2012/12/19/nanotechnology-detecting-and-treating-metastatic-cancer-in-the-lymph-node/

Tilda Barliya, PhD

 

14.2.5         Diagnóstico del cáncer de pulmón en el aliento exhalado mediante nanopartículas de oro

https://pharmaceuticalintelligence.com/2012/12/01/diagnosing-lung-cancer-in-exhaled-breath-using-gold-nanoparticles

Tilda Barliya, PhD

 

14.2.6         Nanoespectroscopia avanzada

https://pharmaceuticalintelligence.com/2016/02/06/advanced-nanospectroscopy/

Dr. Larry H Bernstein, MD, FCAP

 

14.3   Tratamiento del cáncer

 

14.3.1         Tratamiento nanotecnológico del cáncer de mama

https://pharmaceuticalintelligence.com/2012/12/09/naotech-therapy-for-breast-cancer/

Tilda Barliya, PhD

 

14.3.2         Informe sobre el cáncer de ovario y la cirugía guiada por fluorescencia

https://pharmaceuticalintelligence.com/2013/01/19/ovarian-cancer-and-fluorescence-guided-surgery-a-report/

Tilda Barliya, PhD

 

14.3.3         Cáncer de pulmón (CPNM), administración de fármacos y nanotecnología

https://pharmaceuticalintelligence.com/2012/11/08/lung-cancer-nsclc-drug-administration-and-nanotechnology/

Tilda Barliya, PhD

 

14.3.4         Cáncer de próstata y nanotecnología

https://pharmaceuticalintelligence.com/2013/02/07/prostate-cancer-and-nanotecnology/

Tilda Barliya, PhD

 

14.3.5         La nanotecnología aborda el cáncer cerebral

https://pharmaceuticalintelligence.com/2012/11/23/nanotechnology-tackles-brain-cancer/

Tilda Barliya, PhD

 

14.3.6         Leucemia linfoblástica aguda (LLA) y nanotecnología

https://pharmaceuticalintelligence.com/2013/03/21/acute-lymphoblastic-leukemia-all-and-nanotechnology/

Tilda Barliya, PhD

 

14.4   El ADN/ARN como diana

 

14.4.1         Nanotecnología del ADN

https://pharmaceuticalintelligence.com/2013/05/15/dna-nanotechnology/

Tilda Barliya, PhD

 

14.4.2         El desarrollo de los tratamientos basados en ARNip para el cáncer

https://pharmaceuticalintelligence.com/2013/05/09/the-development-of-sirna-based-therapies-for-cancer/

Ziv Raviv, PhD

 

14.4.3         Nanotecnología, medicina personalizada y secuenciación del ADN

https://pharmaceuticalintelligence.com/2013/01/09/nanotechnology-personalized-medicine-and-dna-sequencing/

Tilda Barliya, PhD

 

14.5   Administración transdérmica de fármacos (DSS)

 

14.5.1         Introducción al sistema de administración transdérmica de fármacos (TDD) y a la nanotecnología

https://pharmaceuticalintelligence.com/2013/01/28/introduction-to-transdermal-delivery-tdd-system-and-nanotechnology/

Tilda Barliya, PhD

 

14.5.2         Sistema de administración transdérmica de fármacos (TDD) y nanotecnología: Parte II

https://pharmaceuticalintelligence.com/2013/02/04/transdermal-drug-delivery-tdd-system-and-nanotechnology-part-ii/

Tilda Barliya, PhD

 

14.6   Tratamiento nanotecnológico de enfermedades no cancerosas

https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-therapy-for-non-cancerous-diseases/

Dr. Larry H. Bernstein, MD, FCAP

 

14.6.1         Introducción a la nanotecnología y la enfermedad de Alzheimer

https://pharmaceuticalintelligence.com/2013/03/14/introduction-to-nanotechnology-and-alzheimer-disease/

Tilda Barliya, PhD

 

14.6.2         Nanotecnología y cardiopatías

https://pharmaceuticalintelligence.com/2013/03/04/nanotechnology-and-heart-disease/

Tilda Barliya, PhD

 

14.6.3         Introducción a la ingeniería de tejidos; aplicaciones de la nanotecnología

https://pharmaceuticalintelligence.com/2013/01/01/introduction-to-tissue-engineering-nanotechnology-applications/

Tilda Barliya, PhD

 

14.6.4         Nanotecnología y administración ocular de fármacos: Parte I

https://pharmaceuticalintelligence.com/2013/02/23/nanotechnology-and-ocular-drug-delivery-part-i/

Tilda Barliya, PhD

 

14.6.5         Regeneración ósea y nanotecnología

https://pharmaceuticalintelligence.com/2013/07/13/bone-regeneration-and-nanotechnology/

Tilda Barliya, PhD

 

14.6.6         Nanotecnología y tratamiento del VIH/SIDA

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

Tilda Barliya, PhD

 

14.7   Peligros de la nanotecnología

 

14.7.1         Inmunorreactividad de las nanopartículas

https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/

Tilda Barliya, PhD

 

14.7.2         Nanotecnología y cuestiones de salud

https://pharmaceuticalintelligence.com/2012/11/04/nanotechnology-and-health-issues/

Tilda Barliya, PhD

 

Séptima parte:

etapas de transición del cáncer

 

Capítulo 15:      De la neoplasia maligna in situ al cáncer

 

Introducción

 

15.1   Avances en la inmunopatogenia de la diabetes y los linfomas

https://pharmaceuticalintelligence.com/2016/01/28/immunopathogenesis-advances-in-diabetes-and-lymphomas/

Dr. Larry H. Bernstein, MD, FCAP

 

15.2   Una sola célula arroja luz sobre la transformación maligna celular

https://pharmaceuticalintelligence.com/2016/01/29/single-cell-shines-light-on-cell-malignant-transformation/

Dr. Larry H. Bernstein, MD, FCAP

 

15.3   Nanosensores para el reconocimiento de proteínas y la interacción gen-proteoma

https://pharmaceuticalintelligence.com/2016/01/30/nanosensors-for-protein-recognition-and-gene-proteome-interaction/

Dr. Larry H. Bernstein, MD, FCAP

 

15.4   Los científicos descubren cómo escapan las células cancerosas de los vasos sanguíneos

https://pharmaceuticalintelligence.com/2016/01/31/scientists-discover-how-cancer-cells-escape-blood-vessels/

Danut Dragoi, PhD

 

15.5   Descifrando el epigenoma

https://pharmaceuticalintelligence.com/2016/01/28/deciphering-the-epigenome/

Dr. Larry H. Bernstein, MD, FCAP

 

15.6   La Universidad de Swansea utiliza inteligencia artificial para detectar el cáncer

https://pharmaceuticalintelligence.com/2016/01/24/swansea-uni-uses-artificial-intelligence-to-detect-cancer/

Evelina Cohn, PhD

 

15.7   Factores de crecimiento, supresores y receptores en la tumorigénesis

https://pharmaceuticalintelligence.com/2015/04/07/growth-factors-suppressors-and-receptors-in-tumorigenesis-7-1/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.1         Puntos cuánticos

https://pharmaceuticalintelligence.com/2015/04/13/quantum-dots-7-1/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.2         Fármaco encapsulado en liposomas

https://pharmaceuticalintelligence.com/2015/04/13/liposomal-encapsulated-drug-7-2/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.3         Unión de proteínas, interacciones entre proteínas e implicaciones terapéuticas

https://pharmaceuticalintelligence.com/2015/04/14/protein-binding-protein-protein-interactions-therapeutic-implications-7-3/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.4         EpCAM

https://pharmaceuticalintelligence.com/2015/04/07/epcam-7-4/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.5         Regulación al alza de las vías supresoras tumorales

https://pharmaceuticalintelligence.com/2015/04/08/upregulate-tumor-suppressor-pathways-7-5/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.6         Manipulando las vías de señalización

https://pharmaceuticalintelligence.com/2015/04/08/manipulate-signaling-pathways-7-6/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.7         Actuando sobre vías específicas en los tratamientos antineoplásicos

https://pharmaceuticalintelligence.com/2015/04/09/pathway-specific-targeting-in-anticancer-therapies-7-7/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.8         Sirtuinas

https://pharmaceuticalintelligence.com/2015/04/10/sirtuins-7-8/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.9         Factor 1 Inducible por hipoxia (HIF-1)

https://pharmaceuticalintelligence.com/2015/04/10/hypoxia-inducible-factor-1-hif-17-9/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.10       Señalización de Wnt/β-catenina

https://pharmaceuticalintelligence.com/2015/04/10/wnt%CE%B2-catenin-signaling-7-10/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.11       Actuando sobre la vía de Wnt

https://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/

Dr. Larry H. Bernstein, MD, FCAP

 

Resumen

 

Capítulo 16:      Reflexiones sobre el futuro del tratamiento con anticuerpos monoclonales

 

Introducción

 

16.1   Medicina personalizada: la iniciativa de California

https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/

Demet Sag, PhD, CRA, GCP

 

16.2   Tratamiento con anticuerpos monoclonales: ¿lo que dice el nombre o una descripción clara?

https://pharmaceuticalintelligence.com/2015/10/13/monoclonal-antibody-therapy-what-is-in-the-name-which-one-is-better-mombo-jombo-or-clear-description/

Demet Sag, PhD, CRA, GCP

 

16.3   Tratamiento con anticuerpos monoclonales y su mercado

https://pharmaceuticalintelligence.com/2015/10/14/32589/

Demet Sag, PhD, CRA, GCP

 

16.4   Trastuzumab (Herceptin) para el cáncer de mama

https://pharmaceuticalintelligence.com/2015/10/11/trastuzumab-for-breast-cancer/

Dr. Larry H. Bernstein, MD, FCAP

 

16.5   Rituximab para diversas neoplasias de linfocitos B

https://pharmaceuticalintelligence.com/2015/10/11/rituximab-for-a-variety-of-b-cell-malignancies/

Dr. Larry H. Bernstein, MD, FCAP

 

16.6   Melanoma metastásico: la politerapia inmunoterapéutica de ipilimumab y nivolumab reduce el tamaño tumoral en el 58 % de los pacientes con cáncer de piel

https://pharmaceuticalintelligence.com/2015/06/02/metastatic-melanoma-immunotherapy-drug-combination-ipilimumab-plus-dacarbazine-shrinks-tumor-size-in-58-skin-cancer-patients/

Aviva Lev-Ari, PhD, RN

 

16.7   Tratamiento con anticuerpos monoclonales del mieloma múltiple: elotuzumab

https://pharmaceuticalintelligence.com/2016/01/23/monoclonal-antibody-treatment-of-multiple-myeloma/

Dr. Larry H. Bernstein, MD, FCAP

 

16.8   Fresolimumab

https://pharmaceuticalintelligence.com/2016/01/31/fresolimumab/

Stephen J. Williams, PhD

 

Resumen

 

Octava parte:

Investigación y orientaciones futuras para el tratamiento y la prevención del cáncer

 

 

Capítulo 17:      El futuro de la oncología

 

Introducción

 

17.1   Nuevas estrategias para el tratamiento del cáncer

https://pharmaceuticalintelligence.com/2015/04/11/novel-approaches-to-cancer-therapy-7-12/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2   Medicina personalizada: nuevos diagnósticos e innovación en la farmacocinética

 

17.2.1         Nuevos biomarcadores para la inmunoterapia del cáncer

https://pharmaceuticalintelligence.com/2015/10/10/novel-biomarkers-for-targeting-cancer-immunotherapy/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2.2         Nanotecnología: aptámeros para sistemas de administración específicos y mejores de medicamentos existentes

https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-aptamers-for-specific-better-delivery-systems-of-existing-drugs/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2.3         Células madre de cánceres no hematológicos

https://pharmaceuticalintelligence.com/2015/05/22/nonhematologic-cancer-stem-cells-11-2-3/

Dr. Larry H. Bernstein, MD, FCAP

 

17.3   Prevención del cáncer

 

17.3.1         Diagnóstico precoz

https://pharmaceuticalintelligence.com/2015/10/15/early-diagnosis-early-detection-research-networks/

Stephen J. Williams, PhD

 

17.3.2         Nuevos métodos de diagnóstico

 

17.3.2.1      Combinación de tecnología de nanotubos y anticuerpos creados por ingeniería genética para detectar biomarcadores del cáncer de próstata

https://pharmaceuticalintelligence.com/2013/06/13/combining-nanotube-technology-and-genetically-engineered-antibodies-to-detect-prostate-cancer-biomarkers/

Stephen J. Williams, PhD

 

17.3.2.2      Nuevo plan para analizar de forma rutinaria a los pacientes con el fin de detectar genes cancerígenos heredados

https://pharmaceuticalintelligence.com/2013/05/30/new-scheme-to-routinely-test-patients-for-inherited-cancer-genes/

Stephen J. Williams, PhD

 

17.3.2.3      Biomarcadores del cáncer

https://pharmaceuticalintelligence.com/2015/05/06/cancer-biomarkers-11-3-2-3/

Larry H. Bernstein, MD, FCAP

 

17.3.2.4      BRCA 1 y 2 y detección precoz del cáncer

https://pharmaceuticalintelligence.com/2015/10/11/brca-1-and-2-and-early-detection-of-cancer/

Larry H. Bernstein, MD, FCAP 

 

17.3.2.5      Medicina personalizada: aspiraciones clínicas de las micromatrices

https://pharmaceuticalintelligence.com/2013/03/13/personalized-medicine-clinical-aspiration-of-microarrays/

Stephen J. Williams, PhD

 

17.4 Diseño racional de inhibidores y activadores alostéricos mediante el modelo de cambio poblacional: validación in vitro y aplicación a un biosensor artificial

https://pharmaceuticalintelligence.com/2012/10/26/rational-design-of-allosteric-inhibitors-and-activators-using-the-population-shift-model-in-vitro-validation-and-application-to-an-artificial-biosensor/

Stephen J. Williams, PhD

 

17.5   La relación entre la coagulación y el cáncer afecta a los cuidados paliativos

https://pharmaceuticalintelligence.com/2015/10/19/the-relation-between-coagulation-and-cancer-affects-supportive-treatments/

Demet Sag, PhD, CRA, GCP

 

17.6   Macrófagos asociados al tumor: ¿Siguen siendo un arma de doble filo?

https://pharmaceuticalintelligence.com/2015/09/15/tumor-associated-macrophages-the-double-edged-sword-resolved/

Stephen J. Williams, PhD

 

17.7   Cáncer y nutrición

https://pharmaceuticalintelligence.com/2015/05/04/cancer-and-nutrition/

Larry H. Bernstein, MD, FCAP

 

17.8   Medio ambiente y cáncer

https://pharmaceuticalintelligence.com/2015/05/06/environment-and-cancer-11-3-4/

Larry H. Bernstein, MD, FCAP

 

Resumen

 

 

Capítulo 18:      Nuevos medicamentos contra el cáncer en ensayos clínicos

 

18.1   Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico

https://pharmaceuticalintelligence.com/2014/09/05/multiple-lung-cancer-genomic-projects-suggest-new-targets-research-directions-for-non-small-cell-lung-cancer/

Stephen J. Williams, PhD

 

18.2   Desarrollo de quimiorresistencia a los tratamientos dirigidos: alteraciones de la señalización celular y del cinoma

https://pharmaceuticalintelligence.com/2015/09/17/development-of-chemoresistance-to-targeted-therapies-alterations-of-cell-signaling-the-kinome/

Stephen J. Williams, PhD

 

18.3   Nuevos mecanismos de resistencia a nuevos agentes

https://pharmaceuticalintelligence.com/2016/01/12/novel-mechanisms-of-resistance-to-novel-agents/

Larry H. Bernstein, MD, FCAP and Stephen J. Williams, PhD

 

18.4   Respuestas tóxicas registradas a los nuevos fármacos en ensayos clínicos

 

18.4.1         La toxicidad hepática detiene el ensayo clínico de un antagonista de la PAI para tumores sólidos avanzados

https://pharmaceuticalintelligence.com/2013/11/25/liver-toxicity-halts-clinical-trial-of-iap-antagonist-for-advanced-solid-tumors/

Stephen J. Williams, PhD

 

18.4.2         Buenas y malas noticias sobre el tratamiento del cáncer de ovario

https://pharmaceuticalintelligence.com/2014/06/29/good-and-bad-news-reported-for-ovarian-cancer-therapy/

Stephen J. Williams, PhD

 

18.4.3         Surgen nuevos mecanismos de toxicidad

https://pharmaceuticalintelligence.com/2015/10/07/curation-of-recently-halted-oncology-trials-due-to-serious-adverse-events-2015/

Stephen J. Williams, PhD

 

18.5   Los NIH estudian las directrices de tratamiento con CAR-T: informe del Comité Consultivo sobre el ADN recombinante

https://pharmaceuticalintelligence.com/2014/09/23/nih-considers-guidelines-for-car-t-therapy-report-from-recombinant-dna-advisory-committee/

Stephen J. Williams, PhD

 

18.6   Innovación en la inteligencia biofarmacéutica del cáncer

https://pharmaceuticalintelligence.com/2015/05/19/innovation-in-cancer-biopharmaceutical-intelligence-4-7-2/

Larry H. Bernstein, MD, FCAP

 

Capítulo 19:      Relaciones entre el cáncer y las enfermedades cardiovasculares por Aviva Lev-Ari, PhD y RN

 

19.1   Cáncer, respiración y el peligro del corazón en los pacientes con cáncer

https://pharmaceuticalintelligence.com/2015/08/03/cancer-respiration-and-the-peril-of-the-heart-in-cancer-patients/

Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN

 

19.2   Reuben Shaw, doctor en genética e investigador del Instituto Salk: el metabolismo influye en el cáncer

https://pharmaceuticalintelligence.com/2014/01/08/reuben-shaw-ph-d-a-geneticist-and-researcher-at-the-salk-institute-metabolism-influences-cancer/

Aviva Lev-Ari, PhD, RN

 

19.3   Tumores cardíacos: etiología y clasificación

https://pharmaceuticalintelligence.com/2014/01/08/heart-tumors-etiology-and-classification/

Aviva Lev-Ari, PhD, RN

 

19.4   Amiloidosis con miocardiopatía

https://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/

Larry H. Bernstein, MD FCAP

 

19.5   Estabilizadores que previenen la toxicidad amiloidótica de los cardiomiocitos mediada por la transtiretina

https://pharmaceuticalintelligence.com/2013/12/02/stabilizers-that-prevent-transthyretin-mediated-cardiomyocyte-amyloidotic-toxicity/

Larry H. Bernstein, MD FCAP

 

19.6   Ciencia de los síntomas del cáncer: sobre los mecanismos que subyacen a la expresión de los síntomas relacionados con el cáncer

https://pharmaceuticalintelligence.com/2014/01/15/cancer-symptom-science-on-the-mechanisms-underlying-the-expression-of-cancer-related-symptoms/

Aviva Lev-Ari, PhD, RN

 

19.7   Tratamientos

 

19.7.1         Programas de cardiooncología y oncocardiología: tratamiento de pacientes con cáncer con antecedentes de enfermedades cardiovasculares

https://pharmaceuticalintelligence.com/2014/01/08/cardio-oncology-and-onco-cardiology-programs-treatments-for-cancer-patients-with-a-history-of-cardiovascular-disease/

Aviva Lev-Ari, PhD, RN

 

19.7.2         Radioterapia y quimioterapia: el riesgo farmacológico de desarrollar enfermedades cardiovasculares

https://pharmaceuticalintelligence.com/2014/01/08/20316/

Aviva Lev-Ari, PhD, RN

 

19.8   Tercera Conferencia Anual de la Red Canadiense de Oncología Cardíaca, 20 y 21 de junio de 2013, Centro de Convenciones de Ottawa

https://pharmaceuticalintelligence.com/2014/01/08/3rd-annual-canadian-cardiac-oncology-network-conference-june-20-21-2013-ottawa-convention-centre/

Aviva Lev-Ari, PhD, RN

 

Capítulo 20:      Investigación del cáncer en Technion, Instituto Tecnológico de Israel

 

20.1   Avances recientes en la investigación del cáncer en Technion, Instituto Tecnológico de Israel, 2015

https://pharmaceuticalintelligence.com/2016/02/03/recent-breakthroughs-in-cancer-research-at-the-technion-israel-institute-of-technology-2015/

Stephen J. Williams, PhD

 

20.2 Technion: orientaciones en la investigación del cáncer

 

20.2.1         Avances médicos: un investigador israelí predice dónde se extenderá el cáncer

https://pharmaceuticalintelligence.com/2015/11/04/medical-breakthrough-israeli-researcher-predicts-where-cancer-will-spread/

Evenila Cohn, PhD

 

20.2.2         El cáncer de páncreas en la encrucijada del metabolismo

https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/

Demet Sag, PhD, CRA, GCP

 

20.2.3         Lista de avances en la investigación del cáncer y el desarrollo de fármacos oncológicos por parte de los premiados por el Fondo de Investigación del Cáncer de Israel

https://pharmaceuticalintelligence.com/2015/04/19/list-of-breakthroughs-in-cancer-research-and-oncology-drug-development-by-awardees-of-the-israel-cancer-research-fund/

Aviva Lev-Ari, PhD, RN

 

20.2.4         Laboratorios de investigación sobre el cáncer en la Facultad de Medicina del Technion: Centro de Investigación del Cáncer y Biología Vascular Janet y David Polak

https://pharmaceuticalintelligence.com/2014/05/28/cancer-labs-at-school-of-medicine-technion-janet-and-david-polak-cancer-and-vascular-biology-research-center/

Aviva Lev-Ari, PhD, RN

 

20.2.5         Inmunidad y defensa del hospedador: bibliografía de investigación en el Technion

https://pharmaceuticalintelligence.com/2014/05/27/immunity-and-host-defense-a-bibliography-of-research-technion/

Aviva Lev-Ari, PhD, RN

 

20.2.6         Interacciones hospedador-tumor durante el tratamiento del cáncer: laboratorio del Dr. Yuval Shaked en el Technion

https://pharmaceuticalintelligence.com/2014/05/27/host-tumor-interactions-during-cancer-therapy-dr-yuval-shakeds-lab-technion/

Aviva Lev-Ari, PhD, RN

 

20.3 Technion: acuerdos, asociaciones y colaboraciones

 

20.3.1         La empresa emergente de inmunoterapia celular universal de nueva generación Adicet Bio, de Menlo Park, California, se lanza con una financiación de 51 millones de dólares por parte de OrbiMed

https://pharmaceuticalintelligence.com/2016/01/31/next-generation-universal-cell-immunotherapy-startup-adicet-bio-menlo-park-ca-is-launched-with-51m-funding-by-orbimed/

Aviva Lev-Ari, PhD, RN

 

20.3.2         Soluciones para el mieloma múltiple, un cáncer formado por células plasmáticas malignas: colaboración de la NYU y el Centro Integral del Cáncer del Technion

https://pharmaceuticalintelligence.com/2015/05/12/solutions-for-multiple-myeloma-a-cancer-formed-by-malignant-plasma-cells-collaboration-of-nyu-and-technion-integrative-cancer-center/

Aviva Lev-Ari, PhD, RN

 

20.3.3         Biomarcadores del cáncer detectados con un alcoholímetro: esfuerzo colaborativo de tres universidades

https://pharmaceuticalintelligence.com/2014/06/22/alnion-updated-6232014-biomarkers-of-cancer-detected-by-breathanalyzer-an-collaborative-effort-of-three-universities/

Aviva Lev-Ari, PhD, RN

 

20.3.4         El Technion creó el centro de biología estructural más avanzado de Israel

https://pharmaceuticalintelligence.com/2014/04/10/technion-established-the-most-advanced-center-for-structural-biology-in-the-country/

Aviva Lev-Ari, PhD, RN

 

20.3.5         Instituto de Innovación Technion-Cornell en Nueva York: los investigadores postdoctorales mantienen la licencia exclusiva de su propiedad intelectual y reciben una cantidad fija de capital si crean una empresa subsidiaria

https://pharmaceuticalintelligence.com/2014/02/25/technion-cornell-innovation-institute-in-nyc-postdocs-keep-exclusive-license-to-their-ip-and-take-a-fixed-dollar-amount-of-equity-if-the-researchers-create-a-spinoff-company/

Aviva Lev-Ari, PhD, RN

 

Epílogo: implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg

https://pharmaceuticalintelligence.com/2015/06/03/therapeutic-implications-for-targeted-therapy-from-the-resurgence-of-warburg-hypothesis/

Dr. Larry H. Bernstein, MD, FCAP

 

Serie C: libros electrónicos acerca del cáncer y la oncología

Tratamientos contra el cáncer:

Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos

Cancer Therapies:

Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery

SEGUNDO VOLUMEN

On com since 5/18/2017

http://www.amazon.com/dp/B071VQ6YYK

 

PART B:

The eTOCs in Bi-lingual format:

Spanish and English in Text format

 

Serie C: libros electrónicos acerca del cáncer y la oncología

Consultor de contenidos de la serie C: Larry H. Bernstein, MD, FCAP

  

SEGUNDO VOLUMEN

Tratamientos contra el cáncer:

Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos

Traducción a español

Montero Language Services

(Libro 2 de la serie C) en Amazon.com desde el 18/05/2017

2017

http://www.amazon.com/dp/B071VQ6YYK

Autores, redactores y editores

Larry H Bernstein, MD, FCAP

larry.bernstein@gmail.com

y

Stephen J Williams, PhD

sjwilliamspa@comcast.net

 

Autores y redactores invitados

Tilda Barliya, PhD, tildabarliya@gmail.com

Demet Sag, PhD, demet.sag@gmail.com

Dror Nir, PhD, dror.nir@radbee.com

Ziv Raviv, PhD zraviv06@gmail.com

Danut Dragoi, PhD, Danut.daa@gmail.com

Evelina Cohn, PhD, ecohn2011@yahoo.com

Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu

Leaders in Pharmaceutical Business Intelligence, Boston

 

 

Aviva Lev-Ari, PhD, RN

Redactora jefe de la serie de libros electrónicos BioMed

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

 

 

Series C: e-Books on Cancer & Oncology

Series C Content Consultant: Larry H. Bernstein, MD, FCAP

  

VOLUME TWO

Cancer Therapies:

Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery

(Series C Book 2) on Amazon.com since 5/18/2017

2017

http://www.amazon.com/dp/B071VQ6YYK

Authors, Curators and Editors

Larry H Bernstein, MD, FCAP

larry.bernstein@gmail.com

and

Stephen J Williams, PhD

sjwilliamspa@comcast.net

 

Guest Authors and Curators

 

Tilda Barliya, PhD, tildabarliya@gmail.com

Demet Sag, PhD, demet.sag@gmail.com

Dror Nir, PhD, dror.nir@radbee.com

Ziv Raviv, PhD zraviv06@gmail.com

Danut Dragoi, PhD, Danut.daa@gmail.com

Evelina Cohn, PhD, ecohn2011@yahoo.com

Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu

Leaders in Pharmaceutical Business Intelligence, Boston

 

Aviva Lev-Ari, PhD, RN

Editor-in-Chief BioMed e-Series of e-Books

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

  

ENLACE a otros libros electrónicos sobre el cáncer en Amazon.com de nuestro equipo

 

Biología del cáncer y genómica para el diagnóstico de la enfermedad

(Libro 1 de la serie C) en Amazon.com desde el 11/08/2015

2015

Traducción a español

Montero Language Services

 

http://www.amazon.com/dp/B013RVYR2K

Stephen J. Williams, PhDeditor principal

sjwilliamspa@comcast.net

Tilda Barliya, PhD, editora

tildabarliya@gmail.com

Ritu Saxena, PhD, editora

ritu.uab@gmail.com

  

Leaders in Pharmaceutical Business Intelligence, Boston

 

Aviva Lev-Ari, PhD, RN

Redactora jefe de la serie de libros electrónicos BioMed

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

LINK to other e-Books on Cancer on Amazon.com by Our Team

 

Cancer Biology and Genomics for Disease Diagnosis

(Series C Book 1) on Amazon.com since 8/11/2015

2015

http://www.amazon.com/dp/B013RVYR2K

Stephen J. Williams, PhD, Senior Editor

sjwilliamspa@comcast.net

Tilda Barliya, PhD, Editor

tildabarliya@gmail.com

Ritu Saxena, PhD, Editor

ritu.uab@gmail.com

  

Leaders in Pharmaceutical Business Intelligence, Boston

 

Aviva Lev-Ari, PhD, RN

Editor-in-Chief BioMed e-Series of e-Books

Leaders in Pharmaceutical Business Intelligence, Boston

avivalev-ari@alum.berkeley.edu

 

 

Segundo volumen: Lista de colaboradores y biografía de los autores

Volume Two: List of Contributors and Authors Biography

 

Autor, redactor y editor:

Author, Curator and Editor:

Larry H. Bernstein, MD, FCAP

Prefacio, introducción del volumen, introducciones y resumen de todos los capítulos, 1.1, 1.2, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1,2,8, 2.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.3.1, 2.3.3, 2.3.7, 2.3.8, 2.3.9, 2.3.10, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.10, 3.0, 3.1 – 3.10, 4.1.1, 4.3.2, 4.3.3, 4.4, 4.4.1, 4.4.2, 4.5, 5.1, 6.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 9.1.2.5, 9.3.1.1, 9.5.1.2, 9.5.1.3, 10.1, 10.2, 10.3, 11.2, 11.4, 11.5, 11.6, 11.7, 11.8, 12.1, 12.3, 12.4, 13.1, 14.2.6, 14.6, 15.1, 15.2, 15.3, 15.5, 15.7.1 – 15.7.11, 16.4, 16.5, 16.7, 17.1, 17.2.1, 17.2.2, 17.2.3, 17.3.2.3, 17.3.2.4, 17.7, 17.8, 18.6, 19.1, 19.4, 19.5, epílogo

 Preface, Volume Introduction, Introductions and Summary of all Chapters, 1.1, 1.2, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1,2,8, 2.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.3.1, 2.3.3, 2.3.7, 2.3.8, 2.3.9, 2.3.10, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.10, 3.0, 3.1 – 3.10, 4.1.1, 4.3.2, 4.3.3, 4.4, 4.4.1, 4.4.2, 4.5, 5.1, 6.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 9.1.2.5, 9.3.1.1, 9.5.1.2, 9.5.1.3, 10.1, 10.2, 10.3, 11.2, 11.4, 11.5, 11.6, 11.7, 11.8, 12.1, 12.3, 12.4, 13.1, 14.2.6, 14.6, 15.1, 15.2, 15.3, 15.5, 15.7.1 – 15.7.11, 16.4, 16.5, 16.7, 17.1, 17.2.1, 17.2.2, 17.2.3, 17.3.2.3, 17.3.2.4, 17.7, 17.8, 18.6, 19.1, 19.4, 19.5, Epilogue

 

Author, Curator and Editor:

Stephen J Williams, PhD

Introducciones y resúmenes de los capítulos, 6.1.1, 6.1.1.2, 6.1.1.3, 6.1.1.4, 6.1.5, 6.1.6, 6.1.6.1, 6.1.6.2, 6.1.7, 6.3, 6.3.7, 6.3.8, 9.1.2.3, 9.5.1.1, 12.5, 16.8, 17.3.1, 17.3.2.1, 17.3.2.2, 17.3.2.5, 17.4, 17.6, 18.1, 18.2, 18.3, 18.4.1, 18.4.2, 19.4.3, 18.5, 20.1

 Chapter Introductions and Summaries, 6.1.1, 6.1.1.2, 6.1.1.3, 6.1.1.4, 6.1.5, 6.1.6, 6.1.6.1, 6.1.6.2, 6.1.7, 6.3, 6.3.7, 6.3.8, 9.1.2.3, 9.5.1.1, 12.5, 16.8, 17.3.1, 17.3.2.1, 17.3.2.2, 17.3.2.5, 17.4, 17.6, 18.1, 18.2, 18.3, 18.4.1, 18.4.2, 19.4.3, 18.5, 20.1

 

Guest Authors and Curators:

Dror Nir, PhD

4.2, 4.3.1

Tilda Barliya, PhD

1.3.1, 1.3.3. 2.3.2, 2.2.4, 2.3.5, 3.11, 5.2, 6.1.2, 6.1.3, 6.1.4, 9.1.2.7, 12.2, 14.1, 14.1.1, 14.1.2, 14.2, 14.2.1, 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3, 14.3.1, 14.3.2, 14.3.3, 14.3.4, 14.3.5, 14.3.6, 14.4.1, 14.4.3, 14.5.1, 14.5.2, 14.6.1, 14.6.2, 14.6.3, 14.6.4, 14.6.5, 14.6.6, 14.7, 14.7.1, 14.7.2

Demet Sag, PhD 

2.3.6, 2.4.9, 3.12, 7.2, 7.4, 7.8, 7.9, 11.3, 16.1, 16.2, 16.3, 17.5, 20.2.2

Ziv Raviv, PhD

10.4, 14.4.2

Danut Dragoi, PhD

15.4

Evelina Cohn, PhD

15.6, 20.2.1

Aviva Lev-Ari, PhD, RN

1.3.2, 8.4, 9.1.2.1, 9.1.2.2, 9.1.2.4, 9.1.2.6, 9.3.1.2, 11.1, 16.6, 19.1, 19.2, 19.3, 19.6, 19.7.1, 19.7.2, 19.8, 20.2.3, 20.2.4, 20.2.5, 20.2.6, 20.3.1, 20.3.2, 20.3.3, 20.3.4, 20.3.5

 

 

 

Indice de contenidos electrónico (IDCe)

electronic Table of Contents (eTOCs)

Los enlaces indicados llevan al contenido original en inglés

MD Licenciado/a en medicina y cirugía (Estados Unidos)
PhD Doctorado/a
RN Enfermero/a titulado/a (National Board of Nursing Registration)
FCAP Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos
Ph.D Doctorado/a
CRA CRA
GCP GCP

 

PREFACIO por Larry H. Bernstein, MD, FCAP

PREFACE by Larry H. Bernstein, MD, FCAP

 

Introducción a los tratamientos antineoplásicos por Larry H. Bernstein, MD, FCAP

Introduction to Cancer Therapies by Larry H. Bernstein, MD, FCAP

 

Primera parte:

Farmacoterapia dirigida genómica y metabólica del cáncer

Part One:

Cancer Genomic and Metabolic Targeted Pharmacotherapy

 

Capítulo 1:        Mirando en las profundidades del metaboloma del cáncer

Chapter 1:         Looking Into the Depths of the Cancer Metabolome

 

Introducción

Introduction

 

1.1     Nuevos métodos para el estudio de la replicación, el crecimiento y la regulación celular

1.1     New methods for Study of Cellular Replication, Growth, and Regulation

https://pharmaceuticalintelligence.com/2015/03/25/new-methods-for-study-of-cellular-replication-growth-and-regulation

Larry H. Bernstein, MD, FCAP

 

1.2     Genómica y epigenética: errores genéticos y metodologías en el cáncer y otras enfermedades

1.2     Genomics and Epigenetics: Genetic Errors and Methodologies – Cancer and Other Diseases

https://pharmaceuticalintelligence.com/2015/03/25/genomics-and-epigenetics/

Larry H. Bernstein, MD, FCAP

 

1.2.1 Roturas bicatenarias del ADN

1.2.1  DNA double strand breaks

https://www.nature.com/articles/nbt.3101 https://doi.org/10.1038/nbt.3101

Richard L Frock, et al

 

1.2.2  iARN: acerca de la transcripción y el control metabólico

1.2.2  RNAi – On Transcription and Metabolic Control

https://pharmaceuticalintelligence.com/2015/03/26/rnai/

Larry H. Bernstein, MD, FCAP

 

1.2.3  CRISPR/Cas9: aportaciones sobre la estructura y la función de las endorribonucleasas, su papel en la inmunidad y sus aplicaciones en la ingeniería genómica

1.2.3  CRISPR/Cas9: Contributions on Endoribonuclease Structure and Function, Role in Immunity and Applications in Genome Engineering

https://pharmaceuticalintelligence.com/2015/03/27/crisprcas9/

Larry H. Bernstein, MD, FCAP

 

1.2.4  La perspectiva metabólica de la expresión epigenética

1.2.4  The Metabolic View of Epigenetic Expression

https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/

Larry H. Bernstein, MD, FCAP

 

1.2.5  Cómo «agarran» las células cancerosas a sus vecinas y las «atrapan»

1.2.5  How Cancer Cells “Grab” Neighbors and “Reel them in”

https://pharmaceuticalintelligence.com/2016/02/07/how-cancer-cells-grab-neighbors-and-reel-them-in/

Larry H. Bernstein, MD, FCAP

 

1.2.6  Troncalidad del cáncer colorrectal y ERK

1.2.6  Colorectal cancer stemness and ERK

https://pharmaceuticalintelligence.com/2016/02/06/colorectal-cancer-stemness-and-erk/

Larry H. Bernstein, MD, FCAP

 

1.3     Oncología pediátrica

1.3     Oncology in Childhood

 

1.3.1  Neuroblastoma: una revisión

1.3.1  Neuroblastoma: A review

https://pharmaceuticalintelligence.com/2013/06/01/neuroblastoma-a-review/

Tilda Barliya, PhD

 

1.3.2 El origen genético de la leucemia linfoblástica aguda (LLA) infantil

1.3.2  The Genetic Origin of Childhood Acute Lymphoblastic Leukemia (ALL)

https://pharmaceuticalintelligence.com/2013/03/20/the-genetic-origin-of-childhood-acute-lymphoblastic-leukemia-all/

Aviva Lev-Ari, PhD, RN

 

1.3.3  Leucemia linfoblástica aguda y trasplante de médula ósea

1.3.3  Acute Lymphoblastic Leukemia and Bone Marrow Transplantation

https://pharmaceuticalintelligence.com/2013/03/27/acute-lymphoblastic-leukemia-and-bone-marrow-transplantation/

Tilda Barliya, PhD

 

Resumen

Summary

 

Capítulo 2:        Encontrando la desregulación en las células cancerosas

Chapter 2:         Finding Dysregulation in the Cancer Cell

 

Introducción

Introduction

 

2.1     Revisión del efecto Warburg

2.1    Warburg Effect Revisited

https://pharmaceuticalintelligence.com/2015/03/30/warburg-effect-revisited-2/

Larry H. Bernstein, MD, FCAP

 

2.1.2  Refinando la hipótesis de Warburg

2.1.2  Refined Warburg hypothesis

https://pharmaceuticalintelligence.com/2015/04/01/refined-warburg-hypothesis-2-1-2/

Larry H. Bernstein, MD, FCAP

 

2.1.3  El efecto Warburg y la regulación mitocondrial

2.1.3  Warburg Effect and Mitochondrial Regulation

https://pharmaceuticalintelligence.com/2015/04/01/warburg-effect-and-mitochondrial-regulation-2-1-3/

Larry H. Bernstein, MD, FCAP

 

2.1.4  La acumulación de 2-hidroxiglutarato no sirve como biomarcador de la progresión maligna de los gliomas de bajo grado con mutación de IDH 

2.1.4  Accumulation of 2-hydroxyglutarate is not a biomarker for malignant progression of IDH-mutated low grade gliomas 

https://pharmaceuticalintelligence.com/2015/10/08/accumulation-of-2-hydroxyglutarate-is-not-a-biomarker-for-malignant-progression-of-idh-mutated-low-grade-gliomas/

Larry H. Bernstein, MD, FCAP

 

2.1.5  Isocitrato··deshidrogenasa mitocondrial (IDH) y variantes

2.1.5  Mitochondrial Isocitrate Dehydrogenase (IDH) and variants

https://pharmaceuticalintelligence.com/2015/04/02/mitochondrial-isocitrate-dehydrogenase-and-variants/

Larry H. Bernstein, MD, FCAP

 

2.1.6  Nucleótidos de piridina mitocondriales y la cadena de transporte de electrones

2.1.6  Mitochondrial pyridine nucleotides and Electron Transport Chain

https://pharmaceuticalintelligence.com/2015/04/03/mitochondrial-pyridine-nucleotides-and-electron-transport-chain-2-1-5/

Larry H. Bernstein, MD, FCAP

 

2.1.7  Autofagia 

2.1.7  Autophagy 

https://pharmaceuticalintelligence.com/2015/04/03/autophagy/

Larry H. Bernstein, MD, FCAP

 

2.2     Nuevos conocimientos sobre el efecto Warburg

2.2     New insights on the Warburg Effect

https://pharmaceuticalintelligence.com/2015/08/05/new-insights-on-the-warburg-effect-2-2/

Larry H. Bernstein, MD, FCAP

 

2.2.1  Implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg

2.2.1  Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’

https://pharmaceuticalintelligence.com/2015/06/03/therapeutic-implications-for-targeted-therapy-from-the-resurgence-of-warburg-hypothesis/

Larry H. Bernstein, MD, FCAP

 

2.2.2  Papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer

2.2.2  Role of Nanobiotechnology in Developing Personalized Medicine for Cancer

https://pharmaceuticalintelligence.com/2015/10/08/role-of-nanobiotechnology-in-developing-personalized-medicine-for-cancer-3-1/

Larry H. Bernstein, MD, FCAP

 

2.2.3  El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada

2.2.3  The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and Personalized Medicine

https://pharmaceuticalintelligence.com/2015/10/08/the-her-2-receptor-and-breast-cancer-ten-years-of-targeted-anti-her-2-therapy-and-personalized-medicine-3-3/

Larry H. Bernstein, MD, FCAP

 

2.2.4  La medicina personalizada aún no ha llegado

2.2.4  Personalized Medicine is not yet here

https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/

Larry H. Bernstein, MD, FCAP

 

2.2.5  Biomarcadores para la oncología personalizada: avances recientes y futuros retos 

2.2.5  Biomarkers for personalized oncology: recent advances and future challenges 

https://pharmaceuticalintelligence.com/2015/10/08/biomarkers-for-personalized-oncology-recent-advances-and-future-challenges-3-5/

Larry H. Bernstein, MD, FCAP

 

2.2.6  Oncología personalizada: avances recientes y futuros retos

2.2.6  Personalized oncology: recent advances and future challenges

https://pharmaceuticalintelligence.com/2015/10/09/personalized-oncology-recent-advances-and-future-challenges-3-6/

Larry H. Bernstein, MD, FCAP

 

2.2.7  Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer

2.2.7  Pharmacogenomic biomarkers for personalized cancer treatment

https://pharmaceuticalintelligence.com/2015/10/09/pharmacogenomic-biomarkers-for-personalized-cancer-treatment-3-7/

Larry H. Bernstein, MD, FCAP

 

2.2.8  Límites de la predicción en la medicina personalizada: una visión general

2.2.8  Limits to forecasting in personalized medicine: An overview

https://pharmaceuticalintelligence.com/2015/10/09/limits-to-forecasting-in-personalized-medicine-an-overview-3-8/

Larry H. Bernstein, MD, FCAP

 

2.2.9  La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida

2.2.9  The genome editing toolbox: a spectrum of approaches for targeted modification

https://pharmaceuticalintelligence.com/2015/10/09/the-genome-editing-toolbox-a-spectrum-of-approaches-for-targeted-modification/

Larry H. Bernstein, MD, FCAP

 

2.2.10         El camino hacia la medicina personalizada

2.2.10         The Path to Personalized Medicine

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

2.3     Patología molecular de la progresión del cáncer

2.3     Molecular Pathology of Cancer Progression

2.3.1  Modelo halstediano de la progresión del cáncer

2.3.1  Halstedian Model of Cancer Progression

https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/

Larry H. Bernstein, MD, FCAP

 

2.3.2  La patología molecular de la progresión del cáncer de mama

2.3.2  The Molecular Pathology of Breast Cancer Progression

https://pharmaceuticalintelligence.com/2013/01/10/the-molecular-pathology-of-breast-cancer-progression/

Tilda Barliya, PhD

 

2.3.3  Enfermedades metastásicas

2.3.3  Metastatic Diseases

https://pharmaceuticalintelligence.com/2015/05/01/metastatic-disease-4-3/

Larry H. Bernstein, MD, FCAP

 

2.3.4  CD47: tratamiento antineoplásico dirigido

2.3.4  CD47: Target Therapy for Cancer

https://pharmaceuticalintelligence.com/2013/05/07/cd47-target-therapy-for-cancer/

Tilda Barliya, PhD

 

2.3.5  Cáncer de colon

2.3.5  Colon Cancer

https://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/

Tilda Barliya, PhD

 

2.3.6  Cáncer renal: relación entre el metabolismo en el ciclo de Krebs y la modulación de las histonas

2.3.6  Renal (Kidney) Cancer: Connections in Metabolism at Krebs cycle and Histone Modulation

https://pharmaceuticalintelligence.com/2015/10/14/renal-kidney-cancer-connections-in-metabolism-at-krebs-cycle-through-histone-modulation/

Demet Sag, Ph.D., CRA, GCP

 

2.3.7  Síndrome mielodisplásico y leucemia mieloide aguda tras la quimioterapia adyuvante

2.3.7  Myelodysplastic syndrome and acute myeloid leukemia following adjuvant chemotherapy

https://pharmaceuticalintelligence.com/2015/10/12/myelodysplastic-syndrome-and-acute-myeloid-leukemia-following-adjuvant-chemotherapy/

Larry H. Bernstein, MD, FCAP

 

2.3.8  Metástasis en los ganglios linfáticos

2.3.8  Lymph Node Metastases

https://pharmaceuticalintelligence.com/2015/10/14/lymph-node-metastases/

Larry H. Bernstein, MD, FCAP

 

2.3.9  ¿Especies reactivas de oxígeno en el cáncer de próstata?

2.3.9  Reactive Oxygen species in prostate cancer?

https://pharmaceuticalintelligence.com/2015/10/15/reactive-oxygen-species-in-prostate-cancer/

Larry H. Bernstein, MD, FCAP

 

2.3.10         Glioma, glioblastoma y neurooncología

2.3.10         Glioma, Glioblastoma and Neurooncology

https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/

Larry H. Bernstein, MD, FCAP

 

2.4     Progresión del cáncer hematológico

2.4     Hematological Cancer Progression

 

2.4.1  Neoplasias hematológicas malignas

2.4.1  Hematologic Malignancies

https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancies-table-of-contents-4-2-x/

Larry H. Bernstein, MD, FCAP

 

2.4.2  Clasificación de los cánceres hematológicos

2.4.2  Hematological Cancer Classification

https://pharmaceuticalintelligence.com/2015/08/11/hematological-cancer-classification-2-4/

Larry H. Bernstein, MD, FCAP

 

2.4.3  Diagnóstico de las neoplasias hematológicas malignas

2.4.3  Hematological Malignancy Diagnostics

https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancy-diagnostics-4-2-3/

Larry H. Bernstein, MD, FCAP

 

2.4.4  Tratamiento de las leucemias agudas

2.4.4  Treatment of Acute Leukemias

https://pharmaceuticalintelligence.com/2015/10/05/treatment-of-acute-leukemias/

Larry H. Bernstein, MD, FCAP

 

2.4.5  Tratamiento de las leucemias crónicas

2.4.5  Treatment for Chronic Leukemias

https://pharmaceuticalintelligence.com/2015/08/11/treatment-for-chronic-leukemias-2-4-4b/

Larry H. Bernstein, MD, FCAP

 

2.4.6  Tratamiento de los linfomas

2.4.6  Treatment of Lymphomas

https://pharmaceuticalintelligence.com/2015/08/11/treatment-of-lymphomas-2-4-4c/

Larry H. Bernstein, MD, FCAP

 

2.4.7  Tratamientos para linfomas y leucemias

2.4.7  Treatments for Lymphomas and Leukemias

https://pharmaceuticalintelligence.com/2015/08/11/treatments-for-leukemias-and-lymphomas-4-2-5/

Larry H. Bernstein, MD, FCAP

 

2.4.8  Actualización sobre la leucemia mieloide crónica 

2.4.8  Update on Chronic Myeloid Leukemia 

https://pharmaceuticalintelligence.com/2015/10/14/update-on-chronic-myeloid-leukemia/

Larry H. Bernstein, MD, FCAP

 

2.4.9  El cáncer de páncreas en la encrucijada del metabolismo

2.4.9  Pancreatic Cancer at the Crossroads of Metabolism

https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/

Demet Sag, Ph.D., CRA, GCP

 

2.4.10         Mejor medicación contra el cáncer

2.4.10        Better Cancer Medication

https://pharmaceuticalintelligence.com/2015/10/09/better-cancer-medication/

Larry H. Bernstein, MD, FCAP

 

Resumen

Summary

 

Capítulo 3:       Medicina personalizada contra el cáncer

Chapter 3:        Personalized Medicine in Cancer

 

Introducción

Introduction

 

3.0     Medicina personalizada contra el cáncer: El testimonio de Larry H. Bernstein, MD, FCAP

3.0     Personalized Medicine in Cancer: The Voice of Larry H. Bernstein, MD, FCAP

https://pharmaceuticalintelligence.com/2015/05/12/personalized-medicine-in-cancer-3/

Larry H. Bernstein, MD, FCAP

 

3.1     El camino hacia la medicina personalizada

3.1     The path to personalized medicine

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

3.2     El papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer

3.2     Role of Nanobiotechnology in Developing Personalized Medicine for Cancer

https://pharmaceuticalintelligence.com/2015/10/08/role-of-nanobiotechnology-in-developing-personalized-medicine-for-cancer-3-1/

Larry H. Bernstein, MD, FCAP

 

3.3     El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada

3.3     The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and Personalized Medicine

https://pharmaceuticalintelligence.com/2015/10/08/the-her-2-receptor-and-breast-cancer-ten-years-of-targeted-anti-her-2-therapy-and-personalized-medicine-3-3/

Larry H. Bernstein, MD, FCAP

 

3.4     La medicina personalizada aún no ha llegado

3.4     Personalized Medicine is not yet here

https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/

Larry H. Bernstein, MD, FCAP

 

3.5     Biomarcadores para la oncología personalizada: avances recientes y futuros retos.

3.5     Biomarkers for personalized oncology: recent advances and future challenges.

https://pharmaceuticalintelligence.com/2015/10/08/biomarkers-for-personalized-oncology-recent-advances-and-future-challenges-3-5/

Larry H. Bernstein, MD, FCAP

 

3.5.1  Firma de hipermetilación de ZNF154

3.5.1  ZNF154 hypermethylation signature

https://pharmaceuticalintelligence.com/2016/02/05/znf154-hypermethylation-signature/

Larry H. Bernstein, MD, FCAP

 

3.6     Oncología personalizada: avances recientes y futuros retos.

3.6     Personalized oncology: recent advances and future challenges.

https://pharmaceuticalintelligence.com/2015/10/09/personalized-oncology-recent-advances-and-future-challenges-3-6/

Larry H. Bernstein, MD, FCAP

 

3.7     Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer.

3.7     Pharmacogenomic biomarkers for personalized cancer treatment.

https://pharmaceuticalintelligence.com/2015/10/09/pharmacogenomic-biomarkers-for-personalized-cancer-treatment-3-7/

Larry H. Bernstein, MD, FCAP

 

3.8     Límites de la predicción en la medicina personalizada: una visión general

3.8     Limits to forecasting in personalized medicine: An overview

https://pharmaceuticalintelligence.com/2015/10/09/limits-to-forecasting-in-personalized-medicine-an-overview-3-8/

Larry H. Bernstein, MD, FCAP

 

3.9     La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida

3.9     The genome editing toolbox: a spectrum of approaches for targeted modification

https://pharmaceuticalintelligence.com/2015/10/09/the-genome-editing-toolbox-a-spectrum-of-approaches-for-targeted-modification/

Larry H. Bernstein, MD, FCAP

 

3.10   El camino hacia la medicina personalizada

3.10   The Path to Personalized Medicine

https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/

Larry H. Bernstein, MD, FCAP

 

3.11   Medicina personalizada y cáncer de colon

3.11   Personalized Medicine and Colon Cancer

https://pharmaceuticalintelligence.com/2013/05/25/personalized-medicine-and-colon-cancer/

Tilda Barliya, PhD

 

3.12   Medicina personalizada: la iniciativa de California

3.12   Personalized Medicine – The California Initiative

https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/

Demet Sag, PhD, CRA, GCP

 

Resumen

Summary

Segunda parte:

Oncología intervencionista

Part Two:

Interventional Oncology

Capítulo 4:        Cirugía

Chapter 4:         Surgery

Introducción

Introduction

 

4.1     Papel del sistema nervioso central en las metástasis del cáncer: estudio de los NIH

4.1     Role of the Nervous System in Cancer Metastasis – NIH Study

https://pubmed.ncbi.nlm.nih.gov/23599747/  DOI: 10.3892/ol.2013.1168

Sha Li 1, Yanlai Sun, Dongwei Gao

 

4.1.1  El dolor en las metástasis 

4.1.1  Pain in Metastasis 

https://pharmaceuticalintelligence.com/2015/10/10/state-of-the-art-procedures-in-interventional-oncology/

Demet Sag, PhD, CRA, GCP

 

4.2     Tecnología de imagen en la cirugía del cáncer

4.2     Imaging Technology in Cancer Surgery

https://pharmaceuticalintelligence.com/2015/08/05/imaging-technology-in-cancer-surgery/

Dror Nir, PhD

 

4.3     Enfermedades metastásicas: ejemplos de procedimientos quirúrgicos en el tratamiento del cáncer

4.3     Metastatic Diseases – Examples of Surgical Procedures in Treatment of Cancer

 

4.3.1  Técnicas de ablación en la oncología intervencionista

4.3.1  Ablation Techniques in Interventional Oncology

https://pharmaceuticalintelligence.com/2015/08/05/ablation-techniques-in-interventional-oncology/

Dror Nir, PhD

 

4.3.2  Cánceres no hematológicos

4.3.2  Non-hematological Cancers

https://pharmaceuticalintelligence.com/2015/05/01/nonhematological-cancers-4-2/

Larry H. Bernstein, MD, FCAP

 

4.3.3  Ejemplos de procedimientos quirúrgicos

4.3.3  Examples of Surgical Procedures

https://pharmaceuticalintelligence.com/2015/05/02/examples-of-surgical-procedures-4-4/

Larry H. Bernstein, MD, FCAP

 

4.4     Procedimientos de vanguardia en la oncología intervencionista: ablación por radiofrecuencia, quimioembolización transarterial, ablación por microondas y electroporación irreversible (IRE)

4.4     State-of-the-Art Procedures in Interventional Oncology: Radiofrequency Ablation, Transarterial Chemoembolization, Microwave Ablation and Irreversible Electroporation (IRE)

https://pharmaceuticalintelligence.com/2015/10/10/state-of-the-art-procedures-in-interventional-oncology/

Larry H. Bernstein, MD, FCAP

 

4.4.1  Terapia fotodinámica a nanoescala

4.4.1  Nanoscale photodynamic therapy

https://pharmaceuticalintelligence.com/2016/02/05/nanoscale-photodynamic-therapy/

Larry H. Bernstein, MD, FCAP

 

4.4.2  Alcalinización para bloquear la metástasis tumoral

4.4.2  Alkalinizing to block tumor metastasis

https://pharmaceuticalintelligence.com/2016/02/05/alkalinizing-to-block-tumor-metastasis/

Larry H. Bernstein, MD, FCAP

 

4.5     Cuidados paliativos

4.5     Palliative care

https://pharmaceuticalintelligence.com/2015/05/14/palliative-care_4-6/

Larry H. Bernstein, MD, FCAP

 

Resumen

Summary

 

Capítulo 5:        Radioterapia

Chapter 5:         Radiation Therapy

Introducción

Introduction

 

5.1     Radioterapia de haz externo (EBRT) y braquiterapia

5.1     External beam radiotherapy (EBRT) & Brachytherapy

https://pharmaceuticalintelligence.com/2015/10/10/external-beam-radiation-therapy-and-brachytherapy/

Larry H. Bernstein, MD, FCAP

 

5.2     Tomografía fotoacústica

5.2     Photoacoustic Tomography

https://pharmaceuticalintelligence.com/2013/07/27/photoacoustic-tomography/

Tilda Barliya PhD

 

Capítulo 6:        Quimioterapia

Chapter 6:         Chemotherapy

 

Introducción del Dr. Stephen J. Williams, PhD

Introduction by Dr. Stephen J. Williams, PhD

 

6.1     Fármacos citotóxicos

6.1     Cytotoxic Drugs

 

6.1.1  ¿Por qué la quimioterapia citotóxica sigue siendo un pilar fundamental de muchos regímenes de quimioterapia?

6.1.1  Why Does Cytotoxic Chemotherapy Still Remain a Mainstay in Many Chemotherapy Regimens

https://pharmaceuticalintelligence.com/2015/09/15/why-does-cytotoxic-chemotherapy-still-remain-a-mainstay-in-many-chemotherapeutic-regimens/

Stephen J. Williams, PhD

 

6.1.1.2        Nueva generación de compuestos platinados para eludir la resistencia

6.1.1.2        New Generation of Platinated Compounds to Circumvent Resistance

https://pharmaceuticalintelligence.com/2015/10/15/new-generation-of-platinated-compounds-to-circumvent-resistance/

Stephen J. Williams, PhD

 

6.1.1.3        Nuevos inhibidores de la topoisomerasa: agentes de origen natural

6.1.1.3        New Topoisomerase Inhibitors: Agents From Nature

https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/

Stephen J. Williams, PhD

 

6.1.1.4        ¿Son los inhibidores de la ciclina D una buena diana?

6.1.1.4        Are Cyclin D Inhibitors a Good Target?

https://pharmaceuticalintelligence.com/2015/10/14/are-cyclin-d-and-cdk-inhibitors-a-good-target-for-chemotherapy/

Stephen J. Williams, PhD

 

6.1.2  Timosina alfa1 y melanoma

6.1.2  Thymosin alpha1 and melanoma

https://pharmaceuticalintelligence.com/2013/02/15/thymosin-alpha1-in-melanoma/

Tilda Barliya, PhD

 

6.1.3  Paclitaxel: farmacocinética (FC), farmacodinámica (FD) y farmacogenómica (FG)

6.1.3  Paclitaxel: Pharmacokinetic (PK), Pharmacodynamic (PD) and Pharmacogenomics (PG)

https://pharmaceuticalintelligence.com/2012/11/27/paclitaxel/

Tilda Barliya, PhD

 

6.1.4  Comparación entre paclitaxel y Abraxane (paclitaxel ligado a albúmina)

6.1.4  Paclitaxel vs Abraxane (albumin-bound paclitaxel)

https://pharmaceuticalintelligence.com/2012/11/17/paclitaxel-vs-abraxane-albumin-bound-paclitaxel/

Tilda Barliya, PhD

 

6.1.5  Según un experto sobre el cáncer, la batalla debe reorientarse para adelantarse a la enfermedad

6.1.5  War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert

https://pharmaceuticalintelligence.com/2015/03/27/war-on-cancer-needs-to-refocus-to-stay-ahead-of-disease-says-cancer-expert/

Stephen J. Williams, PhD

 

6.1.6  Resistencia a los tratamientos citotóxicos: revisión actual

6.1.6  Drug Resistance to Cytotoxic Therapies – Current Review

 

6.1.6.1        ¿Se puede considerar que la heterogeneidad intratumoral es un mecanismo de resistencia?

6.1.6.1        Can IntraTumoral Heterogeneity Be Thought of as a Mechanism of Resistance?

https://pharmaceuticalintelligence.com/2015/10/12/can-intratumoral-heterogeneity-be-thought-of-as-a-mechanism-of-resistance/

Stephen J. Williams, PhD

 

6.1.6.2        Las células madre del cáncer como mecanismo de resistencia

6.1.6.2        Cancer Stem Cells As A Resistance Mechanisms

https://pharmaceuticalintelligence.com/2015/10/14/cancer-stem-cells-as-a-mechanism-of-resistance/

Stephen J. Williams, PhD

 

6.1.7  Nuevos inhibidores de la topoisomerasa en ensayos clínicos

6.1.7  New Topoisomerase Inhibitors in Clinical Trials

https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/

Stephen J. Williams, PhD

 

6.2     Neoplasias hematológicas malignas

6.2     Hematological Malignancies

https://pharmaceuticalintelligence.com/2015/05/11/hematologic-malignancies-6-2/

Larry H. Bernstein, MD, FCAP

 

6.3     Tratamientos paliativos

6.3     Supportive Therapies

 

6.3.1  Bifosfonatos y metástasis óseas

6.3.1  Bisphosphonates and Bone Metastasis

https://pharmaceuticalintelligence.com/2015/09/14/bisphosphonatesandbonemetabolism/

Stephen J. Williams, PhD

 

6.3.2 Transfusiones de sangre

6.3.2  Blood transfusions

https://pharmaceuticalintelligence.com/2015/10/10/blood-transfusions/

Larry H. Bernstein, MD, FCAP

 

6.3.3  Eritropoyetina

6.3.3  Erythropoietin

https://pharmaceuticalintelligence.com/2015/10/10/erythropoietin/

Larry H. Bernstein, MD, FCAP

 

6.3.4  G-CSF (factor estimulante de colonias de granulocitos)

6.3.4  G-CSF (granulocyte-colony stimulating factor)

https://pharmaceuticalintelligence.com/2015/10/10/granulocyte-colony-stimulating-factor-g-csf/

Larry H. Bernstein, MD, FCAP

 

6.3.5  Intercambio de plasma (plasmaféresis)

6.3.5  Plasma exchange (plasmapheresis)

https://pharmaceuticalintelligence.com/2015/10/10/plasmapheresis/

Larry H. Bernstein, MD, FCAP

 

6.3.6  Transfusiones de plaquetas

6.3.6  Platelet transfusions

https://pharmaceuticalintelligence.com/2015/10/10/platelet-transfusions/

Larry H. Bernstein, MD, FCAP

 

6.3.7  Esteroides, inflamación y tratamiento con CAR-T

6.3.7  Steroids, Inflammation and CAR-T Therapy

https://pharmaceuticalintelligence.com/2015/09/14/steroids-inflammation-and-car-t-therapy/

Stephen J. Williams, PhD

 

6.3.8  Opioides, dolor y cuidados paliativos

6.3.8  Opioids, pain and Palliative Care

https://pharmaceuticalintelligence.com/2015/09/14/opioids-pain-and-palliative-care/

Stephen J. Williams, PhD

 

Resumen

Summary

Tercera parte:

inmunoterapia, opciones de fármacos biológicos y terapias dirigidas al sistema inmunitario del paciente oncológico

Part Three:

Immunotherapy, Biologics Drugs Options & Targeted Therapies for the Immune System of the Cancer Patient

 

Introducción por el Dr. Larry H Bernstein, MD, FCAP

Introduction by Dr. Larry H Bernstein, MD, FCAP

 

Capítulo 7:        Inmunoterapia basada en virus y vacunas

Chapter 7:         Viral and Vaccine Based Immunotherapy

 

Introducción

Introduction

 

7.1     Bacilo de Calmette-Guérin (BCG) para el cáncer superficial de vejiga

7.1     Bacillus Calmette–Guérin (BCG) for superficial bladder cancer

https://pharmaceuticalintelligence.com/2015/10/11/bacillus-calmette-guerin-bcg-for-superficial-bladder-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

7.2     Resultados del bacilo de Calmette-Guérin (BCG) para el cáncer de vejiga superficial

7.2     Findings on Bacillus Calmette–Guérin (BCG) for Superficial Bladder Cancer

https://pharmaceuticalintelligence.com/2015/10/12/bacillus-calmette-guerin-bcg-for-superficial-bladder-cancer-2/

Demet Sag, PhD, CRA, GCP

 

7.3     Virus del papiloma para el cáncer cervicouterino

7.3     Papilloma viruses for cervical cancer

https://pharmaceuticalintelligence.com/2015/10/10/papilloma-viruses-for-cervical-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

7.4     Observaciones sobre el virus del papiloma humano y el cáncer

7.4     Observations on Human Papilloma Virus and Cancer

https://pharmaceuticalintelligence.com/2015/10/13/huamn-papilloma-virus-and-cancer/

Demet Sag, PhD, CRA, GCP

 

7.5     Inhibidor de la proteína NS5A del VHC de Theravance, Inc. para tratar la infección por el virus de la hepatitis C

7.5     HCV NS5A Inhibitor from Theravance, Inc. to treat hepatitis C virus infection

https://pharmaceuticalintelligence.com/2015/11/03/hcv-ns5a-inhibitor-from-theravance-inc-to-treat-hepatitis-c-virus-infection/

Dr. Larry H Bernstein, MD, FCAP

 

7.6     La ERGE y el adenocarcinoma de esófago

7.6     GERD and Esophageal Adenocarcinoma

https://pharmaceuticalintelligence.com/2015/10/10/gerd-and-esophageal-adenocarcinoma/

Dr. Larry H Bernstein, MD, FCAP

 

7.7     Helicobacter pylori

7.7     Helicobacter Pylorum

https://pharmaceuticalintelligence.com/2015/10/11/helicobacter-pylorum/

Dr. Larry H Bernstein, MD, FCAP

 

7.8     Virus y cáncer: un paseo por la memoria

7.8     Viruses and Cancer: A Walk on the Memory Lane

https://pharmaceuticalintelligence.com/2015/10/12/viruses-and-cancer/

Demet Sag, PhD, CRA, GCP

 

7.9     En el nombre de la traducción: ¿Rebuscado? ¿Amigo o enemigo? De bacteria patógena alimentaria a convertirse en vacuna amiga

7.9     In the name of Translation: Is it a far fetch? Friend or Foe? From a Food Born Pathogen Bacteria to become a friendly Vaccine

https://pharmaceuticalintelligence.com/2015/10/12/in-the-name-of-translation-is-it-a-far-fetch-friend-or-foe-from-a-food-born-pathogen-bacteria-to-become-a-friendly-vaccine/

Demet Sag, PhD, CRA, GCP

 

Capítulo 8:        Trasplante alogénico de células madre hematopoyéticas e injerto contra hospedador

Chapter 8:         Allogeneic Hematopoietic Stem Cell Transplantation and Graft versus Host

 

8.1     Hematopoyesis

8.1     Hematopoiesis

https://pharmaceuticalintelligence.com/2016/01/23/hematopoiesis/

Dr. Larry H Bernstein, MD, FCAP

 

8.2     Trasplante alogénico de células madre

8.2     Allogeneic Stem Cell Transplantation

https://pharmaceuticalintelligence.com/2015/05/14/allogeneic-stem-cell-transplantation-9-2/

Dr. Larry H Bernstein, MD, FCAP

 

8.3     Seguimiento de la LMA con un análisis de sangre de «células específicas»

8.3     Monitoring AML with “cell specific” blood test

https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/

Dr. Larry H Bernstein, MD, FCAP

 

8.4     La estrategia de Juno erradicó las células cancerosas en 10 de 12 pacientes con leucemia, lo que indica potencial para transformar el tratamiento de referencia en oncología

8.4     Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology

https://pharmaceuticalintelligence.com/2014/01/14/junos-approach-eradicated-cancer-cells-in-10-of-12-leukemia-patients-indicating-potential-to-transform-the-standard-of-care-in-oncology/

Aviva Lev-Ari, PhD, RN

 

Capítulo 9: Últimos avances en la inmunoterapia del cáncer

Chapter 9: Latest Development in Immunotherapy in Cancer

 

9.1     Inhibidores del punto de control

9.1 Checkpoint Inhibitors

 

9.1.2  Artículos sobre «PD-L1»

9.1.2  Articles on ‘PD-L1’

 

9.1.2.1        Merck y Pfizer anuncian una alianza estratégica global sobre anticuerpos anti-PD-L1 para acelerar su presencia en la inmunooncología

9.1.2.1       Merck and Pfizer Announces Global Strategic Alliance on Anti-PD-L1 to Accelerate Presence in Immuno-Oncology

https://pharmaceuticalintelligence.com/2014/11/17/merck-and-pfizer-announces-global-strategic-alliance-on-anti-pd-l1-to-accelerate-presence-in-immuno-oncology/

Aviva Lev-Ari, PhD, RN

 

9.1.2.2        Politerapia inmunooncológica: implicaciones para las grandes farmacéuticas

9.1.2.2       Immuno-Oncology Combination Therapy: Implications For Major Pharma

https://pharmaceuticalintelligence.com/2016/01/10/immuno-oncology-combination-therapy-implications-for-major-pharma/

Aviva Lev-Ari, PhD, RN

 

9.1.2.3        El inhibidor de PD1 atezolizumab puede ser prometedor frente al cáncer de vejiga en pacientes con alta expresión de PDL1

9.1.2.3       PD1 Inhibitor atezolizumab may show promise in bladder cancer in patients with high PDL1 expression

https://pharmaceuticalintelligence.com/2015/11/17/pd1-inhibitor-atezolizumab-may-show-promise-in-bladder-cancer-in-patients-with-high-pdl1-expression/

Stephen J. Williams, PhD

 

9.1.2.4        Conferencia sobre Inmunoterapia del Cáncer y Simposio sobre Biomarcadores para la Inmunoterapia del Cáncer, 6-11 de marzo de 2016 | Moscone North Convention Center | San Francisco, CA, EUA

9.1.2.4        Cancer Immunotherapy Conference & Biomarkers for Cancer Immunotherapy Symposium, March 6-11, 2016 | Moscone North Convention Center | San Francisco, CA

https://pharmaceuticalintelligence.com/2015/10/13/cancer-immunotherapy-conference-biomarkers-for-cancer-immunotherapy-symposium-march-6-11-2016-moscone-north-convention-center-san-francisco-ca/

Aviva Lev-Ari, PhD, RN

 

9.1.2.5        Nuevos biomarcadores para la inmunoterapia del cáncer

9.1.2.5        Novel biomarkers for targeting cancer immunotherapy

https://pharmaceuticalintelligence.com/2015/10/10/novel-biomarkers-for-targeting-cancer-immunotherapy/

Dr. Larry H Bernstein, MD, FCAP

 

9.1.2.6        Nuevos hallazgos en el cáncer de endometrio: mutaciones, tipos moleculares y respuestas inmunitarias evocadas por los subtipos de cáncer de endometrio y ovario propensos a las mutaciones

9.1.2.6        New Findings in Endometrial Cancer: Mutations, Molecular Types and Immune Responses Evoked by Mutation-prone Endometrial, Ovarian Cancer Subtypes

https://pharmaceuticalintelligence.com/2015/06/02/new-findings-in-endometrial-cancer-mutations-molecular-types-and-immune-responses-evoked-by-mutation-prone-endometrial-ovarian-cancer-subtypes/

Aviva Lev-Ari, PhD, RN

 

9.1.2.7        Cáncer de páncreas: genética, genómica e inmunoterapia

9.1.2.7        Pancreatic Cancer: Genetics, Genomics and Immunotherapy

https://pharmaceuticalintelligence.com/2013/04/11/update-on-pancreatic-cancer/

Tilda Barliya, PhD

 

9.2     Agentes coestimuladores

  • CD137/41BB
  • OX40
  • CD27
  • GITR
  • CD40

9.2     Co-Stimulatory Agents

  • CD137/41BB
  • OX40
  • CD27
  • GITR
  • CD40

 

9.3     Inmunomoduladores

  • CTLA4
  • KIR
  • IDO IL-2
  • IL-21
  • CSF1R
  • Vacunas

9.3     Immuno-modulators

  • CTLA4
  • KIR
  • IDO IL-2
  • IL-21
  • CSF1R
  • Vaccines

 

9.3.1  Artículos sobre CTLA4, proteína 4 asociada a los linfocitos T citotóxicos

9.3.1  Articles on CTLA4 – cytotoxic T Lymphocyte Associated protein-4

 

9.3.1.1        Inmunoterapia contra el cáncer

9.3.1.1        Cancer Immunotherapy

https://pharmaceuticalintelligence.com/2015/10/27/cancer-immunotherapy/

Dr. Larry H Bernstein, MD, FCAP

 

9.3.1.2        La inmunoterapia combinada anti-CTLA4 y anti-PD1 muestra resultados prometedores contra el melanoma avanzado

9.3.1.2        Combined anti-CTLA4 and anti-PD1 immunotherapy shows promising results against advanced melanoma

https://pharmaceuticalintelligence.com/2013/06/07/combined-anti-ctla4-and-anti-pd1-immunotherapy-shows-promising-results-against-advanced-melanoma/

Aviva Lev-Ari, PhD, RN

 

9.4     Antineoplásicos: cuatro clases de moléculas inmunooncológicas en desarrollo, incluidos los CAR-T

  • Fase de desarrollo,
  • Nombre del medicamento 
  • Nombre de la farmacéutica
  • Indicación de la enfermedad objetivo 

9.4     Anti-Cancer – Four Drug Classes of Immune-Oncology Molecules in Development, including CAR-T

  • Phase of Development,
  • Drug Name 
  • Pharma Name
  • Target Disease Indication 

http://jpmorgan.metameetings.com/confbook/healthcare16/stash/misc/IO%20Combos.pdf

Stephen J. Williams, PhD

 

9.5     Señalización de CAR-T (linfocitos T con receptores de antígenos quiméricos) de quinta generación

9.5  Fifth generation CAR-T (Chimeric Antigen Receptor T- cell) Signaling

9.5.1  Artículos sobre «CAR-T»

9.5.1 Articles on ‘CAR-T’

 

9.5.1.1        Los líderes en el campo de los CAR-T avanzan con esperanza y cautela

9.5.1.1        Leaders in the CAR-T Field Are Proceeding With Cautious Hope

https://pharmaceuticalintelligence.com/2015/12/08/leaders-in-the-car-t-field-are-proceeding-with-cautious-hope/

Stephen J. Williams, PhD

 

9.5.1.2        Tratamiento de la leucemia con CAR-T

9.5.1.2        CAR-T therapy in leukemia

https://pharmaceuticalintelligence.com/2015/11/05/car-t-therapy-in-leukemia/

Dr. Larry H Bernstein, MD, FCAP

 

9.5.1.3 Una rosa, pero con espinas. Expertos en oncología debaten sobre los retos del tratamiento con linfocitos CAR-T.

9.5.1.3 Rosa’s to like – Commentary on “Cancer Experts Discuss Hurdles Facing CAR-T Therapy”

https://pharmaceuticalintelligence.com/2015/09/19/rosas-to-like/

Dr. Larry H Bernstein, MD, FCAP

 

Capítulo 10:        Aptámeros e inhibidores peptídicos pequeños

Chapter 10:         Aptamers and Small Peptide Inhibitors

 

10.1   Vacunas, péptidos pequeños, aptámeros e inmunoterapia [9]

10.1   Vaccines, Small Peptides, aptamers and Immunotherapy [9]

https://pharmaceuticalintelligence.com/2015/05/12/vaccines-small-peptides-aptamers-and-immunotherapy-9

Dr. Larry H Bernstein, MD, FCAP

 

10.2   Inhibidores de la angiogénesis

10.2   Angiogenesis Inhibitors

https://pharmaceuticalintelligence.com/2015/05/15/angiogenesis_inhibitors/

Dr. Larry H Bernstein, MD, FCAP

 

10.3   Inhibidor de MDM2 para el tratamiento de los cánceres

10.3   MDM2 inhibitor for the treatment of cancers

https://pharmaceuticalintelligence.com/2016/01/23/mdm2-inhibitor-for-the-treatment-of-cancers/

Dr. Larry H Bernstein, MD, FCAP

 

10.4   El desarrollo de las tratamientos basados en ARNip para el cáncer

10.4   The Development of siRNA-Based Therapies for Cancer

https://pharmaceuticalintelligence.com/2013/05/09/the-development-of-sirna-based-therapies-for-cancer/

Ziv Raviv, PhD

 

Capítulo 11:      Otras novedades

Chapter 11:       Additional Developments

 

11.1   Pfizer apuesta mil millones de dólares en los agentes biológicos condicionalmente activos de BioAtla | BioAcceleration™ para agentes terapéuticos proteicos

11.1   Pfizer bets $1 billion on BioAtla Conditionally Active Biologics | BioAcceleration™ for Protein Therapeutics

https://pharmaceuticalintelligence.com/2015/12/14/pfizer-bets-1-billion-on-bioatla-conditionally-active-biologics-bioacceleration-for-protein-therapeutics/

Aviva Lev-Ari, PhD, RN

 

11.2   Expresión génica y mecanismos de resistencia inmunitaria adaptativa en el linfoma

11.2   Gene expression and adaptive immune resistance mechanisms in lymphoma

https://pharmaceuticalintelligence.com/2015/10/20/gene-expression-and-adaptive-immune-resistance-mechanisms-in-lymphoma/

Dr. Larry H Bernstein, MD, FCAP

 

11.3   La delicada conexión entre la IDO (indolamina 2,3-deshidrogenasa) y la inmunooncología

11.3   The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology

https://pharmaceuticalintelligence.com/2013/08/04/the-delicate-connection-ido-indolamine-2-3-dehydrogenase-and-immunology/

Demet Sag, PhD, CRA, GCP

 

11.4   Nueva estrategia oncológica mediante el atrapamiento de fármacos

11.4   Novel Oncologic Approach by Drug Trapping

https://pharmaceuticalintelligence.com/2016/02/01/novel-oncologic-approach-by-drug-trapping/

Dr. Larry H Bernstein, MD, FCAP

 

11.5   Biomarcadores del cáncer

11.5   Biomarkers of Cancer

https://pharmaceuticalintelligence.com/2016/02/02/biomarkers-of-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

11.6   Actividad enzimática causante del cáncer

11.6   Cancer Causing Enzyme Activity

https://pharmaceuticalintelligence.com/2016/02/02/cancer-causing-enzyme-activity/

Dr. Larry H Bernstein, MD, FCAP

 

11.7   ADN basura y cáncer de mama

11.7   Junk DNA and Breast Cancer

https://pharmaceuticalintelligence.com/2016/02/02/junk-dna-and-breast-cancer/

Dr. Larry H Bernstein, MD, FCAP

 

11.8   Aptámeros y armazones

11.8   Aptamers and Scaffolds

https://pharmaceuticalintelligence.com/2016/02/06/aptamers-and-scaffolds/

Dr. Larry H Bernstein, MD, FCAP

 

Cuarta parte:

Tratamientos hormonales

Part Four:

Hormonal Therapies

 

Capítulo 12:      Tratamiento hormonal selectivo

Chapter 12:       Selective Hormone Therapy

 

12.1   Tratamiento hormonal

12.1   Hormone Therapy

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.2   Papel de la progesterona en la progresión del cáncer de mama

12.2   Role of progesterone in breast cancer progression

https://pharmaceuticalintelligence.com/2013/06/25/role-of-progesterone-in-breast-cancer-progression/

Tilda Barliya, PhD

 

12.3   Hormonas y diferentes tipos de cáncer de ovario

12.3   Hormone and Different Ovarian Cancers

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.4   La quimioterapia comparada con el tratamiento hormonal en el cáncer de ovario resistente a platino y a paclitaxel: ensayo aleatorizado del grupo alemán del estudio Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) sobre el cáncer de ovario

12.4   Chemotherapy versus hormonal treatment in platinum- and paclitaxel-refractory ovarian cancer: a randomised trial of the German Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) Study Group Ovarian Cancer

https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/

Dr. Larry H Bernstein, MD, FCAP

 

12.5   ¿Regresan los antagonistas de CXCR4 a la quimioterapia contra el cáncer?

12.5   Are CXCR4 Antagonists Making a Comeback in Cancer Chemotherapy?

https://pharmaceuticalintelligence.com/2015/12/15/are-cxc4-antagonists-making-a-comeback-in-cancer-chemotherapy/

Stephen J. Williams, PhD

 

Quinta parte:

tratamientos alternativos

Part Five:

Alternative Therapies

 

Capítulo 13:      Tratamientos complementarios y alternativos

Chapter 13:       Complementary and Alternative Therapies

 

13.1   Tratamientos complementarios y alternativos

13.1   Complementary and Alternative Therapies

https://pharmaceuticalintelligence.com/2015/05/02/complementary-and-alternative-medicine-therapies-9-3-2/

Dr. Larry H Bernstein, MD, FCAP

 

Sexta parte:

Nanotecnología, nanopartículas y administración de fármacos

Por Tilda Barliya, PhD

Part Six:

NanoTechnology, Nanoparticles and Drug Delivery

By Tilda Barliya, PhD

 

Capítulo 14:      Nanopartículas y administración de fármacos

Chapter 14:       Nanoparticles and Drug Delivery

 

14.1   Introducción a la nanotecnología en la administración de fármacos

14.1   Introduction to nanotechnology in Drug Delivery

https://pharmaceuticalintelligence.com/2012/09/28/introduction-to-nanotechnology-in-drug-delivery/

Tilda Barliya, PhD

 

14.1.1         Construcción de un sistema de administración de fármacos (DDS): elección de polímeros y principios activos 

14.1.1         Building a Drug-Delivery System (DDS): choice of polymers and drugs 

https://pharmaceuticalintelligence.com/2012/10/04/building-a-drug-delivery-systemdds-choice-of-polymers-and-drugs/

Tilda Barliya, PhD

 

14.1.2         Factores que afectan a la FC del nanotransportador

14.1.2        Factors affecting the PK of the nanocarrier

https://pharmaceuticalintelligence.com/2012/10/09/factors-affecting-the-pk-of-the-nanocarrier/

Tilda Barliya, PhD

 

14.2   Detección y diagnóstico por imagen

14.2   Detection and Imaging

 

14.2.1         Detección de una sola molécula por Philip Tinnefeld

14.2.1         Single-Molecule Detection by Philip Tinnefeld

https://pharmaceuticalintelligence.com/2013/09/24/single-molecule-detection-by-philip-tinnefeld/

Tilda Barliya, PhD

 

14.2.2         Mesotelina: un biomarcador de detección temprana del cáncer (por Jack Andraka)

14.2.2         Mesothelin: An early detection biomarker for cancer (By Jack Andraka)

https://pharmaceuticalintelligence.com/2013/04/21/mesothelin-an-early-detection-biomarker-for-cancer-by-jack-andraka

Tilda Barliya, PhD

 

14.2.3         Nanotecnología y resonancia magnética

14.2.3         Nanotechnology and MRI imaging

https://pharmaceuticalintelligence.com/2012/10/17/nanotechnology-and-mri-imaging/

Tilda Barliya, PhD

 

14.2.4         Nanotecnología: detección y tratamiento del cáncer metastásico en los ganglios linfáticos

14.2.4         Nanotechnology: Detecting and Treating metastatic cancer in the lymph node

https://pharmaceuticalintelligence.com/2012/12/19/nanotechnology-detecting-and-treating-metastatic-cancer-in-the-lymph-node/

Tilda Barliya, PhD

 

14.2.5         Diagnóstico del cáncer de pulmón en el aliento exhalado mediante nanopartículas de oro

14.2.5         Diagnosing lung cancer in exhaled breath using gold nanoparticles

https://pharmaceuticalintelligence.com/2012/12/01/diagnosing-lung-cancer-in-exhaled-breath-using-gold-nanoparticles

Tilda Barliya, PhD

 

14.2.6         Nanoespectroscopia avanzada

14.2.6         Advanced Nanospectroscopy

https://pharmaceuticalintelligence.com/2016/02/06/advanced-nanospectroscopy/

Dr. Larry H Bernstein, MD, FCAP

 

14.3   Tratamiento del cáncer

14.3   Cancer Therapy

 

14.3.1         Tratamiento nanotecnológico del cáncer de mama

14.3.1         Nanotech Therapy for Breast Cancer

https://pharmaceuticalintelligence.com/2012/12/09/naotech-therapy-for-breast-cancer/

Tilda Barliya, PhD

 

14.3.2         Informe sobre el cáncer de ovario y la cirugía guiada por fluorescencia

14.3.2         Ovarian Cancer and fluorescence-guided surgery: A report

https://pharmaceuticalintelligence.com/2013/01/19/ovarian-cancer-and-fluorescence-guided-surgery-a-report/

Tilda Barliya, PhD

 

14.3.3         Cáncer de pulmón (CPNM), administración de fármacos y nanotecnología

14.3.3         Lung Cancer (NSCLC), drug administration and nanotechnology

https://pharmaceuticalintelligence.com/2012/11/08/lung-cancer-nsclc-drug-administration-and-nanotechnology/

Tilda Barliya, PhD

 

14.3.4         Cáncer de próstata y nanotecnología

14.3.4         Prostate Cancer and Nanotecnology

https://pharmaceuticalintelligence.com/2013/02/07/prostate-cancer-and-nanotecnology/

Tilda Barliya, PhD

 

14.3.5         La nanotecnología aborda el cáncer cerebral

14.3.5         Nanotechnology Tackles Brain Cancer

https://pharmaceuticalintelligence.com/2012/11/23/nanotechnology-tackles-brain-cancer/

Tilda Barliya, PhD

 

14.3.6         Leucemia linfoblástica aguda (LLA) y nanotecnología

14.3.6         Acute Lymphoblastic Leukemia (ALL) and Nanotechnology

https://pharmaceuticalintelligence.com/2013/03/21/acute-lymphoblastic-leukemia-all-and-nanotechnology/

Tilda Barliya, PhD

 

14.4   El ADN/ARN como diana

14.4   Targeting DNA/RNA

 

14.4.1         Nanotecnología del ADN

14.4.1         DNA Nanotechnology

https://pharmaceuticalintelligence.com/2013/05/15/dna-nanotechnology/

Tilda Barliya, PhD

 

14.4.2         El desarrollo de los tratamientos basados en ARNip para el cáncer

14.4.2         The Development of siRNA-Based Therapies for Cancer

https://pharmaceuticalintelligence.com/2013/05/09/the-development-of-sirna-based-therapies-for-cancer/

Ziv Raviv, PhD

 

14.4.3         Nanotecnología, medicina personalizada y secuenciación del ADN

14.4.3         Nanotechnology, personalized medicine and DNA sequencing

https://pharmaceuticalintelligence.com/2013/01/09/nanotechnology-personalized-medicine-and-dna-sequencing/

Tilda Barliya, PhD

 

14.5   Administración transdérmica de fármacos (DSS)

14.5   Transdermal Drug Delivery (DSS)

 

14.5.1         Introducción al sistema de administración transdérmica de fármacos (TDD) y a la nanotecnología

14.5.1         Introduction to Transdermal Drug Delivery (TDD) system and nanotechnology

https://pharmaceuticalintelligence.com/2013/01/28/introduction-to-transdermal-delivery-tdd-system-and-nanotechnology/

Tilda Barliya, PhD

 

14.5.2         Sistema de administración transdérmica de fármacos (TDD) y nanotecnología: Parte II

14.5.2         Transdermal drug delivery (TDD) system and nanotechnology: Part II

https://pharmaceuticalintelligence.com/2013/02/04/transdermal-drug-delivery-tdd-system-and-nanotechnology-part-ii/

Tilda Barliya, PhD

 

14.6   Tratamiento nanotecnológico de enfermedades no cancerosas

14.6   Nanotechnology therapy for non-cancerous diseases

https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-therapy-for-non-cancerous-diseases/

Dr. Larry H. Bernstein, MD, FCAP

 

14.6.1         Introducción a la nanotecnología y la enfermedad de Alzheimer

14.6.1         Introduction to Nanotechnology and Alzheimer disease

https://pharmaceuticalintelligence.com/2013/03/14/introduction-to-nanotechnology-and-alzheimer-disease/

Tilda Barliya, PhD

 

14.6.2         Nanotecnología y cardiopatías

14.6.2         Nanotechnology and Heart Disease

https://pharmaceuticalintelligence.com/2013/03/04/nanotechnology-and-heart-disease/

Tilda Barliya, PhD

 

14.6.3         Introducción a la ingeniería de tejidos; aplicaciones de la nanotecnología

14.6.3         Introduction to Tissue Engineering; Nanotechnology applications

https://pharmaceuticalintelligence.com/2013/01/01/introduction-to-tissue-engineering-nanotechnology-applications/

Tilda Barliya, PhD

 

14.6.4         Nanotecnología y administración ocular de fármacos: Parte I

14.6.4         Nanotechnology and Ocular Drug Delivery: Part I

https://pharmaceuticalintelligence.com/2013/02/23/nanotechnology-and-ocular-drug-delivery-part-i/

Tilda Barliya, PhD

 

14.6.5         Regeneración ósea y nanotecnología

14.6.5         Bone regeneration and nanotechnology

https://pharmaceuticalintelligence.com/2013/07/13/bone-regeneration-and-nanotechnology/

Tilda Barliya, PhD

 

14.6.6         Nanotecnología y tratamiento del VIH/SIDA

14.6.6         Nanotechnology and HIV/AIDS treatment

https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/

Tilda Barliya, PhD

 

14.7   Peligros de la nanotecnología

14.7   Hazards of Nanotechnology

 

14.7.1         Inmunorreactividad de las nanopartículas

14.7.1         Immunoreactivity of Nanoparticles

https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/

Tilda Barliya, PhD

 

14.7.2         Nanotecnología y cuestiones de salud

14.7.2         Nanotechnology and Health issues

https://pharmaceuticalintelligence.com/2012/11/04/nanotechnology-and-health-issues/

Tilda Barliya, PhD

 

Séptima parte:

etapas de transición del cáncer

Part Seven:

Transitional Stages of Cancer

 

Capítulo 15:      De la neoplasia maligna in situ al cáncer

Chapter 15:       In-situ Malignancy to Cancer

Introducción

Introduction

 

15.1   Avances en la inmunopatogenia de la diabetes y los linfomas

15.1   Immunopathogenesis Advances in Diabetes and Lymphomas

https://pharmaceuticalintelligence.com/2016/01/28/immunopathogenesis-advances-in-diabetes-and-lymphomas/

Dr. Larry H. Bernstein, MD, FCAP

 

15.2   Una sola célula arroja luz sobre la transformación maligna celular

15.2   Single Cell Shines Light on Cell Malignant Transformation

https://pharmaceuticalintelligence.com/2016/01/29/single-cell-shines-light-on-cell-malignant-transformation/

Dr. Larry H. Bernstein, MD, FCAP

 

15.3   Nanosensores para el reconocimiento de proteínas y la interacción gen-proteoma

15.3   Nanosensors for Protein Recognition, and gene-proteome interaction

https://pharmaceuticalintelligence.com/2016/01/30/nanosensors-for-protein-recognition-and-gene-proteome-interaction/

Dr. Larry H. Bernstein, MD, FCAP

 

15.4   Los científicos descubren cómo escapan las células cancerosas de los vasos sanguíneos

15.4   Scientists discover how cancer cells escape blood vessels

https://pharmaceuticalintelligence.com/2016/01/31/scientists-discover-how-cancer-cells-escape-blood-vessels/

Danut Dragoi, PhD

 

15.5   Descifrando el epigenoma

15.5   Deciphering the Epigenome

https://pharmaceuticalintelligence.com/2016/01/28/deciphering-the-epigenome/

Dr. Larry H. Bernstein, MD, FCAP

 

15.6   La Universidad de Swansea utiliza inteligencia artificial para detectar el cáncer

15.6   Swansea Uni uses artificial intelligence to detect cancer

https://pharmaceuticalintelligence.com/2016/01/24/swansea-uni-uses-artificial-intelligence-to-detect-cancer/

Evelina Cohn, PhD

 

15.7   Factores de crecimiento, supresores y receptores en la tumorigénesis

15.7   Growth Factors, Suppressors and Receptors in Tumorigenesis

https://pharmaceuticalintelligence.com/2015/04/07/growth-factors-suppressors-and-receptors-in-tumorigenesis-7-1/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.1         Puntos cuánticos

15.7.1         Quantum dots

https://pharmaceuticalintelligence.com/2015/04/13/quantum-dots-7-1/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.2         Fármaco encapsulado en liposomas

15.7.2         Liposomal encapsulated drug

https://pharmaceuticalintelligence.com/2015/04/13/liposomal-encapsulated-drug-7-2/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.3         Unión de proteínas, interacciones entre proteínas e implicaciones terapéuticas

15.7.3         Protein-binding, Protein-Protein interactions & Therapeutic Implications

https://pharmaceuticalintelligence.com/2015/04/14/protein-binding-protein-protein-interactions-therapeutic-implications-7-3/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.4         EpCAM

15.7.4         EpCAM

https://pharmaceuticalintelligence.com/2015/04/07/epcam-7-4/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.5         Regulación al alza de las vías supresoras tumorales

15.7.5         Upregulating Tumor Suppressor Pathways

https://pharmaceuticalintelligence.com/2015/04/08/upregulate-tumor-suppressor-pathways-7-5/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.6         Manipulando las vías de señalización

15.7.6         Manipulating Signaling Pathways

https://pharmaceuticalintelligence.com/2015/04/08/manipulate-signaling-pathways-7-6/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.7         Actuando sobre vías específicas en los tratamientos antineoplásicos

15.7.7         Pathway Specific Targeting in Anticancer Therapies

https://pharmaceuticalintelligence.com/2015/04/09/pathway-specific-targeting-in-anticancer-therapies-7-7/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.8         Sirtuinas

15.7.8         Sirtuins

https://pharmaceuticalintelligence.com/2015/04/10/sirtuins-7-8/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.9         Factor 1 Inducible por hipoxia (HIF-1)

15.7.9         Hypoxia Inducible Factor 1 (HIF-1)

https://pharmaceuticalintelligence.com/2015/04/10/hypoxia-inducible-factor-1-hif-17-9/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.10       Señalización de Wnt/β-catenina

15.7.10       Wnt/β-catenin Signaling

https://pharmaceuticalintelligence.com/2015/04/10/wnt%CE%B2-catenin-signaling-7-10/

Dr. Larry H. Bernstein, MD, FCAP

 

15.7.11       Actuando sobre la vía de Wnt

15.7.11       Targeting the Wnt Pathway

https://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/

Dr. Larry H. Bernstein, MD, FCAP

 

Resumen

Summary

 

Capítulo 16:      Reflexiones sobre el futuro del tratamiento con anticuerpos monoclonales

Chapter 16:       Reflections on the Promise of Monoclonal Antibody Therapy

 

Introducción

Introduction

16.1   Medicina personalizada: la iniciativa de California

16.1   Personalized Medicine – The California Initiative

https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/

Demet Sag, PhD, CRA, GCP

 

16.2   Tratamiento con anticuerpos monoclonales: ¿lo que dice el nombre o una descripción clara?

16.2   Monoclonal Antibody Therapy: What is in the name or clear description?

https://pharmaceuticalintelligence.com/2015/10/13/monoclonal-antibody-therapy-what-is-in-the-name-which-one-is-better-mombo-jombo-or-clear-description/

Demet Sag, PhD, CRA, GCP

 

16.3   Tratamiento con anticuerpos monoclonales y su mercado

16.3   Monoclonal Antibody Therapy and Market

https://pharmaceuticalintelligence.com/2015/10/14/32589/

Demet Sag, PhD, CRA, GCP

 

16.4   Trastuzumab (Herceptin) para el cáncer de mama

16.4   Trastuzumab (Herceptin) for breast cancer

https://pharmaceuticalintelligence.com/2015/10/11/trastuzumab-for-breast-cancer/

Dr. Larry H. Bernstein, MD, FCAP

 

16.5   Rituximab para diversas neoplasias de linfocitos B

16.5   Rituximab for a variety of B-cell malignancies

https://pharmaceuticalintelligence.com/2015/10/11/rituximab-for-a-variety-of-b-cell-malignancies/

Dr. Larry H. Bernstein, MD, FCAP

 

16.6   Melanoma metastásico: la politerapia inmunoterapéutica de ipilimumab y nivolumab reduce el tamaño tumoral en el 58 % de los pacientes con cáncer de piel

16.6   Metastatic Melanoma: Immunotherapy Drug Combination, Ipilimumab plus Nivolumab – Shrinks Tumor Size In 58% Skin Cancer Patients

https://pharmaceuticalintelligence.com/2015/06/02/metastatic-melanoma-immunotherapy-drug-combination-ipilimumab-plus-dacarbazine-shrinks-tumor-size-in-58-skin-cancer-patients/

Aviva Lev-Ari, PhD, RN

 

16.7   Tratamiento con anticuerpos monoclonales del mieloma múltiple: elotuzumab

16.7   Monoclonal antibody treatment of Multiple Myeloma: Elotuzumab

https://pharmaceuticalintelligence.com/2016/01/23/monoclonal-antibody-treatment-of-multiple-myeloma/

Dr. Larry H. Bernstein, MD, FCAP

 

16.8   Fresolimumab

16.8   Fresolimumab

https://pharmaceuticalintelligence.com/2016/01/31/fresolimumab/

Stephen J. Williams, PhD

 

Resumen

Summary

Octava parte:

Investigación y orientaciones futuras para el tratamiento y la prevención del cáncer

 

Part Eight:

Research & Future Directions for

Cancer Therapy and Prevention

 

Capítulo 17:      El futuro de la oncología

Chapter 17:       The Future of Oncology

Introducción

Introduction

 

17.1   Nuevas estrategias para el tratamiento del cáncer

17.1   Novel Approaches to Cancer Therapy

https://pharmaceuticalintelligence.com/2015/04/11/novel-approaches-to-cancer-therapy-7-12/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2   Medicina personalizada: nuevos diagnósticos e innovación en la farmacocinética

17.2   Personalized Medicine: New Diagnostics and Innovation in Pharmacokinetics

 

17.2.1         Nuevos biomarcadores para la inmunoterapia del cáncer

17.2.1         Novel biomarkers for targeting cancer immunotherapy

https://pharmaceuticalintelligence.com/2015/10/10/novel-biomarkers-for-targeting-cancer-immunotherapy/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2.2         Nanotecnología: aptámeros para sistemas de administración específicos y mejores de medicamentos existentes

17.2.2         Nanotechnology: aptamers for specific & better delivery systems of existing drugs

https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-aptamers-for-specific-better-delivery-systems-of-existing-drugs/

Dr. Larry H. Bernstein, MD, FCAP

 

17.2.3         Células madre de cánceres no hematológicos

17.2.3         Non-hematologic Cancer Stem Cells

https://pharmaceuticalintelligence.com/2015/05/22/nonhematologic-cancer-stem-cells-11-2-3/

Dr. Larry H. Bernstein, MD, FCAP

 

17.3   Prevención del cáncer

17.3   Cancer Prevention

 

17.3.1         Diagnóstico precoz

17.3.1         Early Diagnosis

https://pharmaceuticalintelligence.com/2015/10/15/early-diagnosis-early-detection-research-networks/

Stephen J. Williams, PhD

 

17.3.2         Nuevos métodos de diagnóstico

17.3.2         Novel Diagnostics Methods

 

17.3.2.1      Combinación de tecnología de nanotubos y anticuerpos creados por ingeniería genética para detectar biomarcadores del cáncer de próstata

17.3.2.1      Combining Nanotube Technology and Genetically Engineered Antibodies to Detect Prostate Cancer Biomarkers

https://pharmaceuticalintelligence.com/2013/06/13/combining-nanotube-technology-and-genetically-engineered-antibodies-to-detect-prostate-cancer-biomarkers/

Stephen J. Williams, PhD

 

17.3.2.2      Nuevo plan para analizar de forma rutinaria a los pacientes con el fin de detectar genes cancerígenos heredados
17.3.2.2      New scheme to routinely test patients for inherited cancer genes

https://pharmaceuticalintelligence.com/2013/05/30/new-scheme-to-routinely-test-patients-for-inherited-cancer-genes/

Stephen J. Williams, PhD

 

17.3.2.3      Biomarcadores del cáncer

17.3.2.3      Cancer Biomarkers

https://pharmaceuticalintelligence.com/2015/05/06/cancer-biomarkers-11-3-2-3/

Larry H. Bernstein, MD, FCAP

 

17.3.2.4      BRCA 1 y 2 y detección precoz del cáncer

17.3.2.4      BRCA 1 and 2 and Early Detection of Cancer

https://pharmaceuticalintelligence.com/2015/10/11/brca-1-and-2-and-early-detection-of-cancer/

Larry H. Bernstein, MD, FCAP 

 

17.3.2.5      Medicina personalizada: aspiraciones clínicas de las micromatrices

17.3.2.5      Personalized Medicine: Clinical Aspiration of Microarrays

https://pharmaceuticalintelligence.com/2013/03/13/personalized-medicine-clinical-aspiration-of-microarrays/

Stephen J. Williams, PhD

 

17.4 Diseño racional de inhibidores y activadores alostéricos mediante el modelo de cambio poblacional: validación in vitro y aplicación a un biosensor artificial

17.4   Rational Design of Allosteric Inhibitors and Activators Using the Population-Shift Model: In Vitro Validation and Application to an Artificial Biosensor

https://pharmaceuticalintelligence.com/2012/10/26/rational-design-of-allosteric-inhibitors-and-activators-using-the-population-shift-model-in-vitro-validation-and-application-to-an-artificial-biosensor/

Stephen J. Williams, PhD

 

17.5   La relación entre la coagulación y el cáncer afecta a los cuidados paliativos

17.5   The Relation between Coagulation and Cancer affects Supportive Treatments

https://pharmaceuticalintelligence.com/2015/10/19/the-relation-between-coagulation-and-cancer-affects-supportive-treatments/

Demet Sag, PhD, CRA, GCP

 

17.6   Macrófagos asociados al tumor: ¿Siguen siendo un arma de doble filo?

17.6   Tumor Associated Macrophages: The Double-Edged Sword Resolved?

https://pharmaceuticalintelligence.com/2015/09/15/tumor-associated-macrophages-the-double-edged-sword-resolved/

Stephen J. Williams, PhD

 

17.7   Cáncer y nutrición

17.7   Cancer and Nutrition

https://pharmaceuticalintelligence.com/2015/05/04/cancer-and-nutrition/

Larry H. Bernstein, MD, FCAP

 

17.8   Medio ambiente y cáncer

17.8   Environment and Cancer

https://pharmaceuticalintelligence.com/2015/05/06/environment-and-cancer-11-3-4/

Larry H. Bernstein, MD, FCAP

 

Resumen

Summary

 

Capítulo 18:      Nuevos medicamentos contra el cáncer en ensayos clínicos

Chapter 18:       New Cancer Drugs in Clinical Trials

 

18.1   Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico

18.1   Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer

https://pharmaceuticalintelligence.com/2014/09/05/multiple-lung-cancer-genomic-projects-suggest-new-targets-research-directions-for-non-small-cell-lung-cancer/

Stephen J. Williams, PhD

 

18.2   Desarrollo de quimiorresistencia a los tratamientos dirigidos: alteraciones de la señalización celular y del cinoma

18.2   Development of Chemoresistance to Targeted Therapies: Alterations of Cell Signaling & the Kinome

https://pharmaceuticalintelligence.com/2015/09/17/development-of-chemoresistance-to-targeted-therapies-alterations-of-cell-signaling-the-kinome/

Stephen J. Williams, PhD

 

18.3   Nuevos mecanismos de resistencia a nuevos agentes

18.3   Novel Mechanisms of Resistance to Novel Agents

https://pharmaceuticalintelligence.com/2016/01/12/novel-mechanisms-of-resistance-to-novel-agents/

Larry H. Bernstein, MD, FCAP and Stephen J. Williams, PhD

 

18.4   Respuestas tóxicas registradas a los nuevos fármacos en ensayos clínicos

18.4   Toxic Responses Recorded for New Drugs in Clinical Trials

 

18.4.1         La toxicidad hepática detiene el ensayo clínico de un antagonista de la PAI para tumores sólidos avanzados

18.4.1         Liver Toxicity halts Clinical Trial of IAP Antagonist for Advanced Solid Tumors

https://pharmaceuticalintelligence.com/2013/11/25/liver-toxicity-halts-clinical-trial-of-iap-antagonist-for-advanced-solid-tumors/

Stephen J. Williams, PhD

 

18.4.2         Buenas y malas noticias sobre el tratamiento del cáncer de ovario

18.4.2         Good and Bad News Reported for Ovarian Cancer Therapy

https://pharmaceuticalintelligence.com/2014/06/29/good-and-bad-news-reported-for-ovarian-cancer-therapy/

Stephen J. Williams, PhD

 

18.4.3         Surgen nuevos mecanismos de toxicidad

18.4.3         Novel Mechanisms of Toxicity Emerge

https://pharmaceuticalintelligence.com/2015/10/07/curation-of-recently-halted-oncology-trials-due-to-serious-adverse-events-2015/

Stephen J. Williams, PhD

 

18.5   Los NIH estudian las directrices de tratamiento con CAR-T: informe del Comité Consultivo sobre el ADN recombinante

18.5   NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee

https://pharmaceuticalintelligence.com/2014/09/23/nih-considers-guidelines-for-car-t-therapy-report-from-recombinant-dna-advisory-committee/

Stephen J. Williams, PhD

 

18.6   Innovación en la inteligencia biofarmacéutica del cáncer

18.6   Innovation In Cancer Biopharmaceutical Intelligence

https://pharmaceuticalintelligence.com/2015/05/19/innovation-in-cancer-biopharmaceutical-intelligence-4-7-2/

Larry H. Bernstein, MD, FCAP

 

Capítulo 19:      Relaciones entre el cáncer y las enfermedades cardiovasculares por Aviva Lev-Ari, PhD y RN

Chapter 19:       Relations between Cancer and Cardiovascular Diseases by Aviva Lev-Ari, PhD, RN

19.1   Cáncer, respiración y el peligro del corazón en los pacientes con cáncer

19.1   Cancer, Respiration and the Peril of the Heart in Cancer Patients

https://pharmaceuticalintelligence.com/2015/08/03/cancer-respiration-and-the-peril-of-the-heart-in-cancer-patients/

Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN

 

19.2   Reuben Shaw, doctor en genética e investigador del Instituto Salk: el metabolismo influye en el cáncer

19.2   Reuben Shaw, Ph.D., a geneticist and researcher at the Salk Institute: Metabolism Influences Cancer

https://pharmaceuticalintelligence.com/2014/01/08/reuben-shaw-ph-d-a-geneticist-and-researcher-at-the-salk-institute-metabolism-influences-cancer/

Aviva Lev-Ari, PhD, RN

 

19.3   Tumores cardíacos: etiología y clasificación

19.3   Heart Tumors: Etiology and Classification

https://pharmaceuticalintelligence.com/2014/01/08/heart-tumors-etiology-and-classification/

Aviva Lev-Ari, PhD, RN

 

19.4   Amiloidosis con miocardiopatía

19.4   Amyloidosis with Cardiomyopathy

https://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/

Larry H. Bernstein, MD FCAP

 

19.5   Estabilizadores que previenen la toxicidad amiloidótica de los cardiomiocitos mediada por la transtiretina

19.5   Stabilizers that prevent Transthyretin-mediated Cardiomyocyte Amyloidotic Toxicity

https://pharmaceuticalintelligence.com/2013/12/02/stabilizers-that-prevent-transthyretin-mediated-cardiomyocyte-amyloidotic-toxicity/

Larry H. Bernstein, MD FCAP

 

19.6   Ciencia de los síntomas del cáncer: sobre los mecanismos que subyacen a la expresión de los síntomas relacionados con el cáncer

19.6   Cancer Symptom Science: On the Mechanisms underlying the Expression of Cancer-related Symptoms

https://pharmaceuticalintelligence.com/2014/01/15/cancer-symptom-science-on-the-mechanisms-underlying-the-expression-of-cancer-related-symptoms/

Aviva Lev-Ari, PhD, RN

 

19.7   Tratamientos

19.7 Therapies

 

19.7.1         Programas de cardiooncología y oncocardiología: tratamiento de pacientes con cáncer con antecedentes de enfermedades cardiovasculares

19.7.1         Cardio-Oncology and Onco-Cardiology Programs: Treatments for Cancer Patients with a History of Cardiovascular Disease

https://pharmaceuticalintelligence.com/2014/01/08/cardio-oncology-and-onco-cardiology-programs-treatments-for-cancer-patients-with-a-history-of-cardiovascular-disease/

Aviva Lev-Ari, PhD, RN

 

19.7.2         Radioterapia y quimioterapia: el riesgo farmacológico de desarrollar enfermedades cardiovasculares

19.7.2         Radiation and Chemotherapy Therapy: The Pharmacological Risk for Developing Cardiovascular Disease

https://pharmaceuticalintelligence.com/2014/01/08/20316/

Aviva Lev-Ari, PhD, RN

 

19.8   Tercera Conferencia Anual de la Red Canadiense de Oncología Cardíaca, 20 y 21 de junio de 2013, Centro de Convenciones de Ottawa

19.8   3rd Annual Canadian Cardiac Oncology Network Conference, June 20 –21, 2013, Ottawa Convention Centre

https://pharmaceuticalintelligence.com/2014/01/08/3rd-annual-canadian-cardiac-oncology-network-conference-june-20-21-2013-ottawa-convention-centre/

Aviva Lev-Ari, PhD, RN

 

Capítulo 20:      Investigación del cáncer en Technion, Instituto Tecnológico de Israel

Chapter 20:       Cancer Research @ Technion, Israel Institute of Technology

 

20.1   Avances recientes en la investigación del cáncer en Technion, Instituto Tecnológico de Israel, 2015

20.1   Recent Breakthroughs in Cancer Research at the Technion, Israel Institute of Technology, 2015

https://pharmaceuticalintelligence.com/2016/02/03/recent-breakthroughs-in-cancer-research-at-the-technion-israel-institute-of-technology-2015/

Stephen J. Williams, PhD

 

20.2 Technion: orientaciones en la investigación del cáncer

20.2   @Technion: Directions in Cancer Research

 

20.2.1         Avances médicos: un investigador israelí predice dónde se extenderá el cáncer

20.2.1         Medical Breakthrough: Israeli Researcher Predicts Where Cancer Will Spread

https://pharmaceuticalintelligence.com/2015/11/04/medical-breakthrough-israeli-researcher-predicts-where-cancer-will-spread/

Evenila Cohn, PhD

 

20.2.2         El cáncer de páncreas en la encrucijada del metabolismo

20.2.2         Pancreatic Cancer at the Crossroads of Metabolism

https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/

Demet Sag, PhD, CRA, GCP

 

20.2.3         Lista de avances en la investigación del cáncer y el desarrollo de fármacos oncológicos por parte de los premiados por el Fondo de Investigación del Cáncer de Israel

20.2.3         List of Breakthroughs in Cancer Research and Oncology Drug Development by Awardees of The Israel Cancer Research Fund

https://pharmaceuticalintelligence.com/2015/04/19/list-of-breakthroughs-in-cancer-research-and-oncology-drug-development-by-awardees-of-the-israel-cancer-research-fund/

Aviva Lev-Ari, PhD, RN

 

20.2.4         Laboratorios de investigación sobre el cáncer en la Facultad de Medicina del Technion: Centro de Investigación del Cáncer y Biología Vascular Janet y David Polak

20.2.4         Cancer Labs at School of Medicine @ Technion: Janet and David Polak Cancer and Vascular Biology Research Center

https://pharmaceuticalintelligence.com/2014/05/28/cancer-labs-at-school-of-medicine-technion-janet-and-david-polak-cancer-and-vascular-biology-research-center/

Aviva Lev-Ari, PhD, RN

 

20.2.5         Inmunidad y defensa del hospedador: bibliografía de investigación en el Technion

20.2.5         Immunity and Host Defense – A Bibliography of Research @Technion

https://pharmaceuticalintelligence.com/2014/05/27/immunity-and-host-defense-a-bibliography-of-research-technion/

Aviva Lev-Ari, PhD, RN

 

20.2.6         Interacciones hospedador-tumor durante el tratamiento del cáncer: laboratorio del Dr. Yuval Shaked en el Technion

20.2.6         Host – Tumor Interactions during Cancer Therapy – Dr. Yuval Shaked’s Lab @Technion

https://pharmaceuticalintelligence.com/2014/05/27/host-tumor-interactions-during-cancer-therapy-dr-yuval-shakeds-lab-technion/

Aviva Lev-Ari, PhD, RN

 

20.3 Technion: acuerdos, asociaciones y colaboraciones

20.3   @Technion: Deals, Partnerships, and Collaborations

 

20.3.1         La empresa emergente de inmunoterapia celular universal de nueva generación Adicet Bio, de Menlo Park, California, se lanza con una financiación de 51 millones de dólares por parte de OrbiMed

20.3.1         Next-generation Universal Cell Immunotherapy startup Adicet Bio, Menlo Park, CA is launched with $51M Funding by OrbiMed

https://pharmaceuticalintelligence.com/2016/01/31/next-generation-universal-cell-immunotherapy-startup-adicet-bio-menlo-park-ca-is-launched-with-51m-funding-by-orbimed/

Aviva Lev-Ari, PhD, RN

 

20.3.2         Soluciones para el mieloma múltiple, un cáncer formado por células plasmáticas malignas: colaboración de la NYU y el Centro Integral del Cáncer del Technion

20.3.2         Solutions for Multiple Myeloma – a cancer formed by Malignant Plasma Cells: Collaboration of NYU and Technion Integrative Cancer Center

https://pharmaceuticalintelligence.com/2015/05/12/solutions-for-multiple-myeloma-a-cancer-formed-by-malignant-plasma-cells-collaboration-of-nyu-and-technion-integrative-cancer-center/

Aviva Lev-Ari, PhD, RN

 

20.3.3         Biomarcadores del cáncer detectados con un alcoholímetro: esfuerzo colaborativo de tres universidades

20.3.3         Biomarkers of Cancer detected by BreathAnalyzer – An Collaborative effort of three Universities

https://pharmaceuticalintelligence.com/2014/06/22/alnion-updated-6232014-biomarkers-of-cancer-detected-by-breathanalyzer-an-collaborative-effort-of-three-universities/

Aviva Lev-Ari, PhD, RN

 

20.3.4         El Technion creó el centro de biología estructural más avanzado de Israel

20.3.4         Technion established the most advanced Center for Structural Biology in Israel

https://pharmaceuticalintelligence.com/2014/04/10/technion-established-the-most-advanced-center-for-structural-biology-in-the-country/

Aviva Lev-Ari, PhD, RN

 

20.3.5         Instituto de Innovación Technion-Cornell en Nueva York: los investigadores postdoctorales mantienen la licencia exclusiva de su propiedad intelectual y reciben una cantidad fija de capital si crean una empresa subsidiaria

20.3.5         Technion-Cornell Innovation Institute in NYC: Postdocs keep exclusive license to their IP and take a fixed dollar amount of Equity if the researchers create a Spinoff company

https://pharmaceuticalintelligence.com/2014/02/25/technion-cornell-innovation-institute-in-nyc-postdocs-keep-exclusive-license-to-their-ip-and-take-a-fixed-dollar-amount-of-equity-if-the-researchers-create-a-spinoff-company/

Aviva Lev-Ari, PhD, RN

 

Epílogo: implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg

Epilogue – Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’

https://pharmaceuticalintelligence.com/2015/06/03/therapeutic-implications-for-targeted-therapy-from-the-resurgence-of-warburg-hypothesis/

Dr. Larry H. Bernstein, MD, FCAP

 

 

Serie C: libros electrónicos acerca del cáncer y la oncología

Tratamientos contra el cáncer:

Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos

Cancer Therapies:

Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery

SEGUNDO VOLUMEN

http://www.amazon.com/dp/B071VQ6YYK

 

 

PART C:

The Editorials of the original e-Book in

English in Audio format

Preface

Larry H. Bernstein, MD, FCAP

This volume on cancer and cancer therapeutics is somewhat a follow-up of the first, but it expands on the expansive research into the molecular studies of the basis of the group of diseases affecting many organs morpho-genetically having specific roles and having specific time frames in their development. The classes of tumors have been divided into those that are benign and those that are malignant. Those that are benign are limited growths, but many have a transitional period between benign and malignant. Those that are malignant have features of nuclear changes, changes in the nuclear/cytoplasmic ratio, and may have some disruption of the architecture in the case of premalignant epithelium. Biologically the cells differentiate from primitive mesenchymal cells into three basic cell types – epithelial, mesenchymal (fibroblasts), and neuromuscular. Consequently, the endocrine organs of the body are solid epithelial cells with a supporting mesenchymal stroma. They function in biosynthesis, and therefore, have a requirement for NADPH for their function. The lining of hollow organs is epithelial, beneath which there is a mesenchymal layer, and beneath that is a muscularis. In all cases there is a vasculature lined by endothelial cells, with or without a muscular layer. The heart is a muscular organ with a unique neurological support, and the brain and spinal cord are neurological organs. Then there is the immune system and the hematological system that evolved in concert, with the evolution of an antibody mediated and a cell mediated immune system which is, humoral on the one hand, and thymus-derived, on the other hand. In addition, there is a lymphatic drainage system separate from the blood circulation. This is a not so simple or complete description of the anatomical and embryological features of the eukaryote and mammalian organism.

It is from this foundation that we have come to recognize the concept of malignant transformation prior to the molecular and biochemistry subcellular revolution that has occurred in the 20th century. Each organ has a different natural history of physiological function, and deviation from normal cellular behavior. The deviation may be preceded by years of chronic disease, and it may appear associated with virus, radiation, or environmental exposures, any or none of which can be ascertained. There may also be a family history, and a finding of a genomic signature, as with breast cancer and Her-2 Neu. The latter has become important for identifying “epidemiological risk” in a relationship to a population, but not necessarily a predictor of an individual’s risk, which poses a problem for counseling.

Introduction to Cancer Therapies

Larry H. Bernstein, MD, FCAP

In the last 10 years there has been explosive work in cancer research at major universities in the United States, Europe, and worldwide. This research has extended our knowledge beyond basic metabolic pathways of carbohydrate, protein, lipid, and nucleotide synthesis and cellular anabolic and catabolic processes, but well into the realm of cell-cell interactions and signaling pathways, and a new realm has opened that is not genomic, but epigenetic – which is in the realm of cell regulation and genomic expression. New concepts of metabolic, endocrine, neurological and psychosocial diseases, and cancer are emerging with rapidity. Putting it all into a comprehensible framework will be necessary to overcome problems in pharmacotherapy

What has become apparent is the complexity of carcinogenesis and treatments required because of the evolving understanding not only of cancer genomics, but also of the cancer “metabolomes”, which may differ in patients by age, metabolic pathways, signaling pathways, environmental factors, to name a few.  As a result of this realization, the need for combinations of surgical approach, radiotherapies, and pharmacological therapies has become the central issue of oncology. This will be elaborated in the following chapters that are bundled into parts.

WATCH VIDEO 

https://www.youtube.com/watch?v=QyoZuxHhvvE

 

Part One

Cancer Genomic and Metabolic Targeted Pharmacotherapy

 

Chapter 1: Looking Into the Depths of the Cancer Metabolome

Introduction

Larry H. Bernstein, MD, FCAP

 

Cancer Cell Metabolism- There Is No ROS for the Weary

Chi V. Dang, Commentary on Ros et al., p. 328 (1).
Cancer Discov; 2(4); 304–7
http://dx.doi.org:/10.1158/2159-8290.CD-12-0069

Using a high-throughput short-hairpin RNA library screen targeting 222 metabolic nodes, Ros and colleagues identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), a glycolytic enzyme that shunts glucose into the pentose phosphate pathway for NADPH production, as a critical node for the survival of prostate cancer cells. Blocking PFKFB4 induces reactive oxygen species and cancer cell death, suggesting that PFKFB4 could be therapeutically targeted.

Cancer cells are on the go, adsorbing lipids and picking up nutrients for deregulated self-replication, which frequently culminates in the death of the host. In this issue of Cancer Discovery, Ros and colleagues (1) document the dependence of prostate cancer cells on 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), a glycolytic enzyme that plays an important role in attenuating reactive oxygen species (ROS) for the weary cancer cell to survive and in lipid synthesis for the cancer cell to replicate. Normal mammalian cells, such as cells of the gut or bone marrow, can replicate at significant rates for tissue homeostasis. Tissue stem cells or immune cells stimulated by growth factors or cytokines undergo a signal transduction and transcriptional program that permits both cell mass accumulation through macromolecular synthesis (e.g., lipid, protein, and nucleic acid synthesis) and acquisition of a commensurate bioenergetic supply. Nutrient-depleted, lowered energy conditions trigger AMP-activated protein kinase, which diminishes cellular ATP consumption and stimulates self-eating or autophagy to recycle cellular components as energy. In nutrient-replete conditions, glucose modulates transcription through its conversion to intracellular hexosephosphate and hexosamine, whereas glutamine import is required for activation of mTORC1 to stimulate cell growth (2, 3). Growth factor-receptor signaling further bolsters the cell growth program by activating mTORC2 and AKT, which can directly stimulate glycolysis, and early response genes such as MYC (Fig. 1A). The MYC gene produces a pleiotropic transcription factor that stimulates ribosome biogenesis, nucleotide synthesis, DNA replication, and the import of both glucose and glutamine to support the bioenergetic needs of a growing cell (4).

Figure 1 (not shown).
A, diagram depicts –

  • Receptor signaling and nutrient import.
  • Receptor signaling, through phosphoinositide 3-kinase (PI3K), stimulates mTORC2 and AKT as well as the MYC oncogene, which stimulates ribosome biogenesis and biomass accumulation for cell proliferation.
  • Glucose and glutamine import stimulated by MYC induces mTORC1 and a collateral pathway of activating protein synthesis and ribosome biogenesis.
  • Glutamine is shown converted to glutamate and then to α-ketoglutarate for further mitochondrial oxidation.
  • Glucose is converted to lactate or to acetyl-CoA, which is further oxidized in the mitochondrion. Glucose is also shown shunted to the PPP to produce NADPH and ribose-5-phophate.
  • B, glycolytic conversion of glucose to pyruvate and its conversion to ribose-5-phosphate via the pentose phosphate pathway.
  • Glucose is transported into the cell and phosphorylated to glucose-6-phosphate by hexokinases, and then to fructose-6-phosphate by glucose phosphate isomerase.
  • Fructose-6phosphate is phosphorylated by PFK1, which is positively allosterically regulated by fructose-2, 6-phosphate (F2, 6P), to fructose-1,6-phosphate and subsequently metabolized to pyruvate for further oxidation in the mitochondrion, a rich source of ROS.
  • The levels of F2,6P are regulated by the PFK2 family members, PFKFB4 and TIGAR (a target of p53) that dephosphorylates F2,6P and PFKFB3 that generates F2,6P from fructose-2phosphate.
  • Increased PFKFB4 or TIGAR lowers F2,6P and hence decreases PFK1 activity, shunting glucose-6-phosphate into the pentose phosphate pathway for production of ribose-5-phosphate and NADPH.
  • NADPH reduces glutathione and thereby inhibits ROS.

Intriguingly, the necessity of PFKFB4 for cell survival extends beyond prostate cancer because other cancer cell lines are also sensitive to knockdown of PFKFB4 expression. Why PFKFB4 levels are elevated in prostate and other cancer cell lines is not known. Diminished PFKFB4 expression, however, does not seem to dramatically affect growth of the normal human prostate epithelial cell line RWPE1. Until there are further studies, it seems premature to suggest that PFKFB4 is not essential for normal cell proliferation in light of a significant overlap in the metabolic profiles of normal T cells and that of lymphoma. MYC induces glucose and glutamine metabolism in normal T-cell mitogenesis and proliferation of neoplastic lymphocytes, suggesting a significant overlap between normal and neoplastic cell metabolism. The difference, however, is that deregulated oncogene expression renders tumor cells addicted to nutrients.

All 3 prostate cancer cell lines studied by Ros and colleagues are highly glycolytic. It is notable, however, that RWPE1 is also glycolytic and does not display the truncated TCA cycle of normal prostate. Ros and colleagues also report the lack of significant dependence of these prostate cancer cell lines on glutamine, which contrasts with some previous published studies. It is notable that glutamine appears to be a significant substrate for the TCA cycle, particularly under hypoxia. In fact, glutamine can contribute to a significant fraction of lipids through its conversion to α-ketoglutarate and subsequent reductive carboxylation to isocitrate, which is then converted to citrate for lipid synthesis via ATP citrate lyase. Furthermore, under limiting glucose levels in the hypoxic tumor microenvironment, glutamine fills in the TCA cycle as well as supports the synthesis of glutathione. Notwithstanding these nuances, the article by Ros and colleagues and earlier studies from the laboratories of Cheng and Vousden, and Clem and colleagues underscore the importance of the PFK2 family of enzymes in tumor metabolism, which might be exploitable for cancer therapy.

  1. Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/ fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2012; 2:328–43.
  2. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2010; 12:21–35.
  3. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10:671–84.
  4. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325–37.

Summary

The first chapter has covered a range of topics related to the metabolism and proliferation of cancer cells, which have been viewed as self-perpetuating without apoptosis.  There is important consideration of enzyme catalysis in cell metabolic pathways and a relationship of metabolic expression to the term “epigenetics”. The term epigenetics is in common use, but it is not informative, intending to indicate cellular expression that is not transcribed from the genome. However, in the multiorgan species, differences in expression occur among organs in relationship to adaptation to the external and internal extracellular milieau.   It also included the work on both inhibiting and noncoding RNAs, and also the work of Jennifer Duoda on DNA genomic engineering. It concluded with the childhood acute leukemias, and bone marrow transplants.

Chapter 2: Finding Dysregulation in the Cancer Cell     

Introduction

This chapter is very basic to the understanding of cancer.  It begins with the Warburg effect that was a seminal discovery in the 1920s by the great biochemist of that century. The Warburg effect is a defining characteristic of cancer cells.  The chapter does on to cover key metabolic pathways involved in the uniqueness of cancer cells, that have much similarity of one to another, more so than the organ of origin. This is, however, somewhat overstated because it is well recognized that endocrine cancers are considerably more indolent than squamous and adenocarcinomas of non endocrine tissue.  NO Kaplan hypothesized that endocrine organs are distinguished by the predominance of the NADP, synthetic form of pyridine nucleotide, and that energy dependent tissues have a predominance of the NAD form. The discussion of autophagy is important in the previously mentioned balance between repair and cell death (apoptosis).  This is an insight that comes in the late twentieth century. Isocitrate dehydrogenase isoenzyme becomes important for a tie in with the impaired respiration of the malignant cell.  Cell matastasis is discussed, and there is an introduction to personalized medicine.

Summary

The second chapter covers material that is essential for an understanding of cancer biology.  Foremost is the observation of impaired respiration and the mitochondrial pathways involved.  While cancer cells replicate, the metabolic dependence is on the anaerobic pathways, which yield 2 ATP vs 38 ATP by aerobic metabolism through the Krebs Cycle (tricarboxylic acid cycle).  In addition, there is also an equilibrium, or dysequilibrium between autophagy and apoptosis.  As to the life of the host, the growing malignancy robs the host of metabolic nutrients and creates an environment in which there is a metabolic acidosis from lactic acidemia.  Related to this phenomenon, There is a background proinflammatory state, and with it there is gluconeogenesis involving lean body mass.  This results in the conversion of amino acid to glucose for fuel. This is the basis for cancer cachexia.  The study of mechanism of the metastatic behavior of cancer cells has also been presented. When cancers reach the metastatic stage, it becomes the highlight of a systemic disease, and this introduces a focus on chemotherapy. This chapter also has covered both hematologic and solid organ malignancies.

Chapter 3: Personalized Medicine in Cancer

Introduction

The importance of personalized medicine is highlighted by the realization that cancers may retain characteristics of their organ of origin, they also differ with their types.  This is apparent from the different biological behaviors between endocrine and non-endocrine tumors. It also is observed that cancers of the same type are different in their behavior, and also that cancers have characteristics that are defining for malignancy.  These tumors invade to regional lymph nodes and to distant sites. The patients having the same cancer have differences in histological grade and in cancer STAGE.  Even this knowledge does not predict outcomes or choice of treatments with great success.  The key to guide therapy requires a correct knowledge of genomic, metabolic, and regulatory features which are the necessary benchmark for targeting therapy. Only with such a knowledge will it be possible to develop a personalized oncologic treatment.

 

Summary

The material just completed covers the common interest in personalized medicine.  The genomic revolution has given hope to a growing expectation of the emergence of personalized medicine.  The task is still a difficult journey.  Personalized medicine will require that individualized treatments are given to each patient with a defined malignancy.  One factor in the discussion that can’t be ignored is the heterogeneity of expression within cancer types.  Another consideration is that in cancer progression, there are mitotic changes that complicate the treatment. This results in the need for accurately identifying both genotype and phenotype because expression of the tumor is essential, and it also means that expression introduces a time domain in the process.

Part Two

Interventional Oncology

Chapter 4: Surgery

Introduction

The treatment of “tumors” by surgical means goes back centuries.  The introduction of anesthesia for the treatment of pain introduced huge possibilities for progress in surgery.  In the Eighteenth Century, there were few physicians who were scientifically educated, and they were mainly in European countries.  The best education available was in great institutions that had a tie in with religious scholarship.  In the New World, many physicians were also ministers.  This changed with the elimination of schools for medical and premedical education that had no basis in science. It came in the Twentieth Century with the Flexner Report, and Johns Hopkins University became the outstanding medical institution.  Johns Hopkins had two among the giants of medical education – Halsted and Osler. They were indeed, the fathers of modern surgery and medicine. This chapter reviews the advances in surgery of cancer in the 20th Century.

Summary

Chapter 4 has covered the progress of surgery in the treatment of cancer.  The progress of surgical procedures has been highly dependent on the progress in radiology and interventional radiology, and as much dependent on the advances made in anesthesia and pain control. The progress in anesthesia gave better access to local excision with reduction of pain, and also to better management of the patients vital signs during long and difficult procedures.  The advances in radiology led to surgical removal with greater precision under advanced imaging techniques.

Chapter 5: Radiation Therapy

Introduction

We have seen how important radiology contributed to the development of surgery. The first Nobel Prize in Physics went to Roentgen for his discovery of the x-ray, which gave rise to methods in both medical and non-medical use. This chapter introduces topics of interest in radiation as therapy.

UPDATED on 5/17/2021

Happy 80th Birthday: Radioiodine (RAI) Theranostics: Collaboration between Physics and Medicine, the Utilization of Radionuclides to Diagnose and Treat: Radiation Dosimetry by Discoverer Dr. Saul Hertz, the early history of RAI in diagnosing and treating Thyroid diseases and Theranostics

Guest Author: Barbara Hertz

https://pharmaceuticalintelligence.com/2021/03/02/happy-80th-birthday-radioiodine-rai-theranostics-collaboration-between-physics-and-medicine-the-utilization-of-radionuclides-to-diagnose-and-treat-radiation-dosimetry-by-discoverer-dr-saul-hert/

5.1 External beam radiotherapy (EBRT) & Brachytherapy

Larry H.Bernstein, MD, FCAP

A Successful Case of Treatment of Prostate Cancer

“A Cardiff University professor whose pioneering research helped change the way prostate cancer is treated has been recognized with a major scientific award” Prof Malcolm Mason was recognized for his research in combining radiotherapy and hormone therapy. He thanked 1,025 men, mostly from the UK and Canada, who took part in a trial over 10 years. It showed the combined treatment significantly improved survival rates. In recognition of his work, Prof Mason, the head of Cardiff University’s Institute of Cancer and Genetics at the School of Medicine, was presented with the William Farr Medal at a dinner in London on Thursday. He said: “Prostate cancer accounts for 10,000 male deaths in the UK each year and is the second most common cause of cancer death in men, after lung cancer. Still alive “The trial was conducted because it was unknown whether radiotherapy would help to extend the lives of men with prostate cancer and reduce their chances of dying from their cancer.” What the trial proved, however, was that by providing radiotherapy in addition to hormone therapy, 74% of the men who took part in the trial were still alive after seven years, compared with 66% who did not have radiotherapy. All the men who took part in the randomized controlled trial – known in the UK as PR07 – between 1995 and 2005 had had “locally advanced” prostate cancer diagnosed, which had grown outside the surface of the prostate but had not spread further. Half the group were treated with hormone therapy, a standard form of drug treatment, and the other half with a combination of the same hormone therapy and an additional course of radiotherapy. The researchers also found that those who received radiotherapy were about half as likely to die of their prostate cancer. Prof Mason is also director of the Wales Cancer Bank, based at Velindre Hospital in Cardiff. The centre, one of the foremost of its kind in the world, has revolutionized opportunities for cancer research, collecting blood and tissue samples from thousands in Wales whether suffering from cancer or with a potential cancer diagnosis. Of his award, the professor said: “It’s always pleasing to be recognized but in reality this award goes to all the men who took part in this trial, which has shown radiotherapy to be so worthwhile for patients with the type of prostate cancer we call ‘locally advanced’ . “This is only just the start – the next stage will be to ensure that the results of this trial are implemented into treatment recommendations as quickly as possible,” he added. Cardiff University vice-chancellor Prof Colin Riordan congratulated Prof Mason on his “richly deserved award”, instituted by the Worshipful Society of Apothecaries. “By answering the important question of whether prostate cancer patients would benefit from radiotherapy, Prof Mason has helped alter the way prostate cancer is treated, making sure that treatment decisions are based on the best possible evidence.”

SOURCE

Itzhaz Golan, PhD

Chapter 6: Chemotherapy

Stephen J. Williams, PhD

Introduction

This chapter is concerned with the actions and side effects of chemotherapy. Chemotherapy has been a very significant advance in medicine giving rise to the medical specialty of Oncology.  The first victory in Oncology might have been traced to treatment of childhood leukemia in Boston Children’s Hospital.  It is clear that this typr of treatment would be first to develop in treatment of blood disorders, which are systemic by definition. The use of chemotherapeutics has become important in advanced solid tumors with local or distant metastasis.  This gives rise to a treatment based on grade and stage.  Grade defines the characterization of the tumor in situ. Stage defines the characterization in terms of local or distant metastasis.  Metastasis is an advanced invasion beyond the limits of confinement of the tumor. Both radiation and chemotherapy become essential in the treatment plan.

Summary

This chapter has covered major advances in the use of oncologic drugs and the side effects to consider.  These drugs are often given concurrently with radiation therapy, and in many advanced diseases, there is multi-drug therapy.  Chemotherapy is an emerging discipline. Therapy has to be adjusted in many cases because of multi-drug resistance. Just as in antibiotic treatment for infection, cancer treatment is confounded by drug resistance.  As malignancy progresses, there is usually a concomitant resistance when the malignancy does not recede. In addition, there may be remission, only to see recurrence some time later.

 

Part Three

Immunotherapy, Biologics Drugs Options &

Targeted Therapies for the Immune System of the Cancer Patient

Introduction

Larry H Bernstein, MD, FCAP

This project has been the most intense search for answers in my career as a pathologist.  It was perhaps made somewhat necessary after my retirement from a career in clinical pathology with a feeling of not having finished my life work, which began in my childhood reading of Paul De Kruif’s Microbe Hunters, and continued with my readings in collegiate course in scientific German. I began serious work on the crystallins of the eye lens and also on the ontogeny of the lactic dehydrogenase isoenzymes in the laboratory of Prof. Harry Maisel after my sophomore year in medical school, and when I graduated in 1968, I had chosen a career in pathology, but a career limited to service in anatomic pathology would not be a good fit.  I was mentored in residency by a superb pathologist and biochemist who suggested after a year that I work in the laboratory of Nathan O. Kaplan, at University of California, San Diego, where I completed my training in biochemistry and enzymology, in particular, and also completed my residency in pathology under Averill Liebow.  It was an intense experience. Unappreciated by me at the time, NO Kaplan never used the terminology for the pyridine nucleotide coenzymes – NAD and NADP – but stuck to the terms used by Otto Warburg, DPN and TPN.  I was still not prepared for the half century old hypothesis by Warburg that cancer involves a dysmetabolism of the mitochondrion, and he had referred to the work 60 years earlier by Louis Pasteur to identify in the proliferation of cancer cells, a reliance on glycolysis (as in fermentation), even in the presence of oxygen.  However, in my first academic appointment I continued studies of the mitochondrial and cytoplasmic malate dehydrogenases. I developed a simple assay to determine the ratio of the two activities based on the work done earlier on differences in their inhibition by a ternary complex formed between oxaloacetate and the NAD+ formed during the forward reaction with the reduced coenzyme. I also obtained fast growing and minimal deviation hepatocellular carcinoma tissue from my Chairman, Herschel Sidransky, and found interesting differences between cytoplasmic malate dehydrogenases from benign liver, minimal deviation and fast growing cancer that I could not continue long term.

The Warburg investigations have been re-explored in a new light in the 21st century. The scientific instrumentation and the computational tools available today have brought a greater depth to biological and medical sciences, which has given real promise to a reconstruction of pharmaceutical sciences. This is the case for infectious diseases, autoimmune disease, diabetes, genetic diseases, cardiovascular disease, endocrinology, and also cancer.

The difficulty with cancer has been the variety of presentations and courses of development for carcinogenesis by types of tissue, age, and sex, as well as differences within types. This has been made clear by the significant number of mutations that have been uncovered associated with cancers in humans and animal models. The first generations of cancer therapies were directed at DNA and replication, and they have carried toxicities to nonmalignant cells. However, we have unlocked an inner dimension of cells in which there are networks of interacting pathways that are involved in cellular regulation. We also have a much better grasp of the processes of cell replication, cellular remodeling, proliferation, and cell death, which ranges from some degree of autophagia involving mitochondria, the endoplasmic reticulum, and the lysosome, and cell death (apoptosis). The proteins, enzymes and pathways have been evolved for thousands of years, and are of primordial descent.

This chapter is concerned with the possibilities for pharmaceutical developments in cancer for the near future.  It will cover the outlined subchapters. It is based on extensive searches for articles using a combination of sources. The basic theme of these presentations will be in more than one direction as follows:

  • The encapsulation of a drug on conjugates so embedded that the action is locally directed to the site of the tissue disrupted.
  • The targeting of specific pathways related to cancer oncogenes, or more specifically, having a key role in cell proliferation, cell adhesion, and metastatic potential.
  • The effect of overexpression of identified pathways, and the effect of suppression of the same pathways, and the interaction between other key pathways that are upregulated or downregulated.
  • The investigation of these mechanisms brings one to some conclusion about the amazing intricacy of how we age, and how we interact with a stressful environment.

This is what makes it difficult to design a treatment that is the so thought of “magic bullet”, and it necessitates more than one course of treatment, and combination treatments will probably not go away. However, there may still be many opportunities for treatments that are optimum for the patient and the condition. In addition, there is another dimension that was not so possible even a decade ago.

The clear knowledge of how these pathways are related to the particular cancer, and the ability to measure the substrates and small molecules involved has introduced a better way to follow the effectiveness of treatment, and at an early stage.

The reader will find that not all of the treatments are necessarily by use of a monoclonal antibody. All of the reactions do rely on an intermolecular reaction like a lock-and-key that binds with a critical small molecule that is critically engaged in a regulatory process.  Whether it is sufficient is a matter to be discovered.  We are now familiar with a library of terms, such as, conformational change, linkers, promoters, inhibitors, upregulation, downregulation, baggage-carriers, heteromer, dimer, trimer, etc.  These all are players in this process.

 

Part Five

Alternative Therapies

Chapter 13: Complementary and Alternative Therapies

13.1 Complementary and Alternative Therapies

The Voice of Larry H Bernstein, MD, FCAP

This chapter proceeded essential information about the pharmacooncologic treatment of cancer not previously discussed. It included discussions of complementary and alternative medicines. These treatments have not undergone clinical trials, and in several examples this should be considered.  Most important is that these offer very low toxicity.  Also important is the use of hormone therapy, which was established after the discovery of hormones in cancer progression.  Also known is the simple fact of hormone resistance. The treatment with anti-angiogenesis agents has not proved efficacious in a experience despite the great promise expected. Allogeneic stem cell transplantation and graft-versus host reaction are also covered.

Part Seven

Transitional Stages of Cancer

Chapter 15: In-situ Malignancy to Cancer

The Voice of Larry H Bernstein, MD, FCAP

 

Introduction

Immunotherapy has advanced over the last half century. The use of antibodies has historical been for identification in diagnostics. Immunology was initially only concerned with B-cells and antibodies, and owes much to Robert Good, MD, a pioneer in pediatric immunology.  The production of antibodies initially was polyclonal, which resulted in a mixture of antibodies.  This changed with the introduction of monoclonal antibodies. However, this was no simple matter.  It complicated the production of diagnostic antibodies because two manufactured monoclonal antibodies might recognize a different ligand for binding site. This chapter, however, is focused on the use of antibodies for immunotherapy.  The application of monoclonal antibodies is clearly the best choice, provided the target binding site is the definitive site.  In addition to the antibody, there has been the emerging technology for the delivery of the immunotherapy. That is a topic for discussion.  The related chapter on nanotechnology and aptamers is a separate chapter.

Summary

I introduced these presentations with a message of high complexity and intricate networks that govern our cells.  We have had a spectacular development in the research on genomics, but the picture was incomplete. There are repeated discoveries of new oncogenes that are related to cancer discoveries. In some cases they have had a large impact on diagnosis and relationship to an at risk population, most notably in breast cancer. Then there is the long history of PSA in prostate cancer.  These are biomarkers, and biomarkers of another generation are coming into play.  These biomarkers are the signaling molecules that are directly involved in the tumorigenesis progression.

While we know about the large number of genomes that can develop mutations over a lifetime, we cannot necessarily make a determination of cause and effect.  In addition, the study of genomics is not necessarily related to phenotypic observables. The genome is the script, and it is not directly engaged in the dynamic processes of the living cell.  We now have a host of molecular agents that interact with genetic chromatin, or interact with the cytoskeleton, which can have an impact in the immediate cell structure and function. There are small RNAs, large RNAs, and peptides and proteins. The cell is engaged with other cells by an intercellular matrix, by transport proteins, by pore structures that convey electrolytes, and the cell is sensitive to hydrostatic pressure and to temperature.

We also see that there are protein substrate, and protein-protein interactions that occur in close proximity and affect protein conformation. These many reactions occur in milliseconds to maybe a hundredth of a millisecond. This is the architecture needed to survive in a stressful environment, which might arise intracellularly as well as extracellulary.

This chapter has gone into much detail about the relationship of signaling cascades and key regulatory targets involved in cell stemness, cell proliferation, cell aggregation, and cell metastasis. The reactions discussed don’t bring into the discussion of a dimension of the metabolic process that also needs consideration. Some reactions have been unknown until the development of mass spectroscopy. If there is a reaction, we have to consider either a cationic cofactor, or a nucleotide catalyst.  Briton Chance pioneered the study of in vivo cell monitoring for changes in the ratio of NADH/NAD+.  This is a dynamic viewing of cellular processes.

There are three articles in the Apr 15, 2015 issue of Genetic Engineering News (Genengnews.com) that are specifically related to this discussion.

  • Vicki Glasser – Diverse Pathways to Drug Targets.

Protein paths through the gene-expression undergrowth have been well trodden, but RNA paths want wear too.

More than 90 percent of the genome that is transcribed into RNA is not translated into protein, and the growing numbers of naturally occurring microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being identified and characterized, the important role that they have in normal biological processes and diseases is becoming ever more clear. An example to illustrate this point is the case of a Phase II clinical study of micravirsen, antisense oligonucleotide, in patients with hepatitis C (hep C), published in 2013 in the New England Journal of Medicine that describes its effectiveness as dependent on the miR-122 binding hepC for stability, and inhibition of miR-122 in HCV infected patients was associated with decreased levels of HCV that continued beyond the treatment period.
However, does this also apply to cancer. According to George Calin and coworkers at MD Anderson Cancer Center, Houston, Tx, regulatory RNAs – both miRNAs and other ncRNAs are being investigated to identify miRNAs of about 21-22 nucleotides length that can serve as reliable biomarkers for cancer diagnosis and to guide treatment. These miRNAs are stably expressed in tumor cells and  the exosomes are present in body fluids, where they act like hormones and signaling molecules. The work was described in 2014 in CA: A Cancer Journal for Clinicians (“MicroRNAome genome: a treasure for cancer diagnosis and therapy”, and was also presented in Feb 2014 at the Molecular Med Tri Conference in San Francisco. Nevertheless, finding a miRNA target is difficult because an individual miRNA could have a role in regulating tens, hundreds, and even thousands of protein-coding genes. The message is to identify mRNAs that affect a single pathway of interest to help limit off-target effects. The solution depends on identifying which metabolic and/or signaling pathways are activated of inhibited.

  • Lisa Heiden – Precision Tuning GPCR PathwaysG protein coupled receptors (GPCRs) are essential drug targets for therapeutic intervention due to their integral roles in a plathora of fundamental signal transduction pathways. But discovering, designing, and synthesizing GPCR-targeted compounds for modulating signaling has been difficult, mainly because the pathways are so complex. Consequently, of 800 proteins that have been classified as GPCRs only drugs have been developed against only 50.
  • Kate Marusina – RNA Constructs: Thread Translational Needle

Noncoding RNA plays a major role in gene expression and gene regulation, and its malfunction often results in abnormal cellulat activity. This understanding led to the development of treatment strategies that use RNA both as therapeutics targets and treatment agents. This years’ Gordon Conference on Nanotechnology is dedicated to RNA nanotechnology research. Cancer pathways and miRNAs (that regulate the expression of more than 90 percent of the human genome) are linked, according to Carlo Croce at Ohio State University Institute of Genetics.  miRNA is often the downstream target of an initial tumorigenic event. Dr. Croce’s team identified a cause of chronic lymphocytic leukemia (CLL) in a chromosomal region that is lost in 70 percent of CLL, which contains two miRNA genes, miRNA-15 and mi-RNA-16. They demonstrated that these are negative regulators of another gene in the cascade, BCL-2. In May 2014 AbbVie presented results from a Phase Ib clinical trial of ABT-199, a BCL-2 selective inhibitor. The response rate was 84% in patients with relapsed/refractory CLL.  Furthermore, Peixuan Guo’s team at University of Kentucky Nanobiotechnology Center introduced the phi29 motor pRNA nanotechnology that is a hexameric pRNA nanoparticle with a ribozyme, a receptor-binding aptamer, a siRNA, an image reporter molecule, a bound drug site, and a component for endosome disruption.   The key to success will be sustaining tumor suppression using the scaffold, targeting ligands and therapeutic modules that can be composed entirely of RNA. The prototype was achieved by packaging bacteriophage phi29 (pRNA) fragments designed to form multimeric RNA nanoparticles with defined size and structure.

 

Chapter 16: Reflections on the Promise of. Monoclonal Antibody Therapy

Introduction

This chapter has two not concordant issues. The first is the relationship to viruses and chronic inflammatory agents to the risk of developing cancer. It is not clear what the causal relationship is in some cases.  The second is the emergence of monoclonal antibodies use in the treatment of cancers.  In the first statement we have good knowledge of the relationship of hepatitis B and C to the long term risk of hepatoma, and of human papilloma virus to the risk of cervical cancer, and of a relationship of gastro-duodenal ulcer, and of gastric reflux to cancer risk.  In the second statement we have far greater specificity for both diagnosis and for treatment in the development of monoclonal antibodies.  There are limitations to the use of monoclonal antibodies. In diagnostics, a test for a disease marker may be directed at different sites on a protein identifier.  In the case of treatment, the case may arise if there is a similar monoclonal antibody that is non-identical at the target site for two pharmaceutical drugs.

Summary

This chapter has covered in considerable depth the research into viruses and infection in the development of certain cancers. The mechanism is not known, except that there is a long term risk.  In addition, we have reviewed some important types of cancer, the relationship to virus or inflammatory factor risk. Finally, we have explored the oncologic treatment of cancer using some very well established monoclonal onco-therapies.

Part Eight

Research & Future Directions for Cancer Therapy and Prevention

Chapter 17: The Future of Oncology

Introduction

The material that follows builds on what has come before.  Surgery and radiation therapy have improved substantial in the last half century, but they have limits.  Radiotherapy will expand with the use of radio-pharceutical probes to target cancers, which puts this treatment alongside of pharmacotherapy.  Pharmaceutical therapy has enormous potential for improvement by improving the selectivity of the agents used and by reducing the toxicity to proximate non-malignant tissue. This is not going to be an easy task. Treating a cancer is like hitting a moving target and the dimensions we have to work in have time and space limitations.  Given the changing mileau of the malignant tissue based on metabolic, signaling, and translational dynamics, we will have to face adjustment of treatments during a treatment phase, and we have to be prepared for recurrence.  The challenge is not only in the science.  The cost of pharmacotherapy is rising faster than our current medical system can handle.

Summary

The last chapter has considered some of the recent advances in pharmacotherapy for cancers based on good science. There has also been a presentation of some innovators as well as innovative methods for the leukemias, and for solid tumors.  These treatments have involved better methods to arrest tumor growth and metastasis.

Epilogue

Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’

Larry H. Bernstein, MD, FCAP

http://pharmaceuticalintelligence.com/2015/06/03/therapeutic-implications-for-targeted-therapy-from-the-resurgence-of-warburg-hypothesis/

 

 

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)

Like this:

Like Loading...

  • Follow Blog via Email

    Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 9,308 other subscribers
  • Recent Posts

    • Mastering the Art of Learning: Algorithm Balances Imitation and Trial-and-Error for Effective Machine Training June 1, 2023
    • Artificial Intelligence (AI) Used to Successfully Determine Most Likely Repurposed Antibiotic Against Deadly Superbug Acinetobacter baumanni May 26, 2023
    • Testimonial on the English to Spanish Translation JOINT Project that yielded the “BioMed e-Series Spanish-language Edition” on Amazon.com May 24, 2023
    • percutaneous Left Ventricular Assist Device (pLVAD) – An Israeli startup, Magenta Medical, behind the world’s smallest heart pump has raised $55 million May 5, 2023
    • microRNA (miRNA) miR-483-5p has a key role in preventing stress-related anxiety by acting on its target gene Pgap2 that curbs the development of this type of anxiety May 3, 2023
    • Prediction of exact requirement of exogenous hormone doses in contraceptives to reduce health issues April 25, 2023
    • Alliance for Cancer Gene Therapy to honor Dr. Crystal Mackall with Edward Netter Leadership Award April 8, 2023
    • Creating a Twitter Space for @pharma_BI for Live Broadcasts March 14, 2023
    • The Vibrant Philly Biotech Scene: Recent Happenings & Deals March 11, 2023
    • Peak oxygen uptake (VO2peak) quantified fitness: Lifelong and late-onset athletes had higher VO2peak than non-athletes March 7, 2023
  • Archives

  • Categories

  • Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org
    • 1 2012pharmaceutical
    • 1 Amandeep Kaur
    • 1 Aashir Awan, Phd
    • 1 Abhisar Anand
    • 1 Adina Hazan
    • 1 Alan F. Kaul, PharmD., MS, MBA, FCCP
    • 1 alexcrystal6
    • 1 anamikasarkar
    • 1 apreconasia
    • 1 aviralvatsa
    • 1 David Orchard-Webb, PhD
    • 1 danutdaagmailcom
    • 1 Demet Sag, Ph.D., CRA, GCP
    • 1 Dror Nir
    • 1 dsmolyar
    • 1 Ethan Coomber
    • 1 evelinacohn
    • 1 Frason
    • 1 Gail S Thornton
    • 1 Irina Robu
    • 1 jayzmit48
    • 1 jdpmd
    • 1 jshertok
    • 1 kellyperlman
    • 1 Ed Kislauskis
    • 1 larryhbern
    • 1 Madison Davis
    • 1 marzankhan
    • 1 megbaker58
    • 1 ofermar2020
    • 1 Dr. Pati
    • 1 pkandala
    • 1 ritusaxena
    • 1 Rick Mandahl
    • 1 sjwilliamspa
    • 1 Srinivas Sriram
    • 1 stuartlpbi
    • 1 Dr. Sudipta Saha
    • 1 tildabarliya
    • 1 zraviv06
    • 1 zs22

Powered by WordPress.com.

WPThemes.


 

Loading Comments...
 

    %d bloggers like this: