View on Amazon.com
https://www.amazon.com/dp/B0BQTM44SM
Audio y Texto
- NEW GENRE Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery
- Original Volume 2: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery (Series C Book 2).
On com since 5/18/2017
http://www.amazon.com/dp/B071VQ6YYK
-
NEW GENRE Volume Two: Cancer Therapies: Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery
This volume has the following three parts:
PART A: The eTOCs in Spanish in Audio format
PART B: The eTOCs in Bi-lingual format: Spanish and English in Text format
PART C: The Editorials of the original e-Book in English in Audio format
PART A:
The eTOCs in Spanish in Audio format
Serie C: libros electrónicos acerca del cáncer y la oncología
Consultor de contenidos de la serie C: Larry H. Bernstein, MD, FCAP
SEGUNDO VOLUMEN
Tratamientos contra el cáncer:
Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos
Traducción a español
(Libro 2 de la serie C) en Amazon.com desde el 18/05/2017
2017
http://www.amazon.com/dp/B071VQ6YYK
Autores, redactores y editores
y
Autores y redactores invitados
Tilda Barliya, PhD, tildabarliya@gmail.com
Demet Sag, PhD, demet.sag@gmail.com
Dror Nir, PhD, dror.nir@radbee.com
Ziv Raviv, PhD zraviv06@gmail.com
Danut Dragoi, PhD, Danut.daa@gmail.com
Evelina Cohn, PhD, ecohn2011@yahoo.com
Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu
Leaders in Pharmaceutical Business Intelligence, Boston
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
ENLACE a otros libros electrónicos sobre el cáncer en Amazon.com de nuestro equipo
Biología del cáncer y genómica para el diagnóstico de la enfermedad
(Libro 1 de la serie C) en Amazon.com desde el 11/08/2015
2015
Traducción a español
http://www.amazon.com/dp/B013RVYR2K
Stephen J. Williams, PhD editor principal
Leaders in Pharmaceutical Business Intelligence, Boston
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
SEGUNDO VOLUMEN
Tratamientos contra el cáncer:
Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos
Indice de contenidos electrónico (IDCe)
Los enlaces indicados llevan al contenido original en inglés
MD | Licenciado/a en medicina y cirugía (Estados Unidos) |
PhD | Doctorado/a |
RN | Enfermero/a titulado/a (National Board of Nursing Registration) |
FCAP | Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos |
Ph.D | Doctorado/a |
CRA | CRA |
GCP | GCP |
PREFACIO por Larry H. Bernstein, MD, FCAP
Introducción a los tratamientos antineoplásicos por Larry H. Bernstein, MD, FCAP
Primera parte:
Farmacoterapia dirigida genómica y metabólica del cáncer
Capítulo 1: Mirando en las profundidades del metaboloma del cáncer
Introducción
1.1 Nuevos métodos para el estudio de la replicación, el crecimiento y la regulación celular
Larry H. Bernstein, MD, FCAP
1.2 Genómica y epigenética: errores genéticos y metodologías en el cáncer y otras enfermedades
https://pharmaceuticalintelligence.com/2015/03/25/genomics-and-epigenetics/
Larry H. Bernstein, MD, FCAP
1.2.1 Roturas bicatenarias del ADN
https://www.nature.com/articles/nbt.3101 https://doi.org/10.1038/nbt.3101
Richard L Frock, et al
1.2.2 iARN: acerca de la transcripción y el control metabólico
https://pharmaceuticalintelligence.com/2015/03/26/rnai/
Larry H. Bernstein, MD, FCAP
1.2.3 CRISPR/Cas9: aportaciones sobre la estructura y la función de las endorribonucleasas, su papel en la inmunidad y sus aplicaciones en la ingeniería genómica
https://pharmaceuticalintelligence.com/2015/03/27/crisprcas9/
Larry H. Bernstein, MD, FCAP
1.2.4 La perspectiva metabólica de la expresión epigenética
https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/
Larry H. Bernstein, MD, FCAP
1.2.5 Cómo «agarran» las células cancerosas a sus vecinas y las «atrapan»
https://pharmaceuticalintelligence.com/2016/02/07/how-cancer-cells-grab-neighbors-and-reel-them-in/
Larry H. Bernstein, MD, FCAP
1.2.6 Troncalidad del cáncer colorrectal y ERK
https://pharmaceuticalintelligence.com/2016/02/06/colorectal-cancer-stemness-and-erk/
Larry H. Bernstein, MD, FCAP
1.3 Oncología pediátrica
1.3.1 Neuroblastoma: una revisión
https://pharmaceuticalintelligence.com/2013/06/01/neuroblastoma-a-review/
Tilda Barliya, PhD
1.3.2 El origen genético de la leucemia linfoblástica aguda (LLA) infantil
Aviva Lev-Ari, PhD, RN
1.3.3 Leucemia linfoblástica aguda y trasplante de médula ósea
Tilda Barliya, PhD
Resumen
Capítulo 2: Encontrando la desregulación en las células cancerosas
Introducción
2.1 Revisión del efecto Warburg
https://pharmaceuticalintelligence.com/2015/03/30/warburg-effect-revisited-2/
Larry H. Bernstein, MD, FCAP
2.1.2 Refinando la hipótesis de Warburg
https://pharmaceuticalintelligence.com/2015/04/01/refined-warburg-hypothesis-2-1-2/
Larry H. Bernstein, MD, FCAP
2.1.3 El efecto Warburg y la regulación mitocondrial
https://pharmaceuticalintelligence.com/2015/04/01/warburg-effect-and-mitochondrial-regulation-2-1-3/
Larry H. Bernstein, MD, FCAP
2.1.4 La acumulación de 2-hidroxiglutarato no sirve como biomarcador de la progresión maligna de los gliomas de bajo grado con mutación de IDH
Larry H. Bernstein, MD, FCAP
2.1.5 Isocitrato··deshidrogenasa mitocondrial (IDH) y variantes
Larry H. Bernstein, MD, FCAP
2.1.6 Nucleótidos de piridina mitocondriales y la cadena de transporte de electrones
Larry H. Bernstein, MD, FCAP
2.1.7 Autofagia
https://pharmaceuticalintelligence.com/2015/04/03/autophagy/
Larry H. Bernstein, MD, FCAP
2.2 Nuevos conocimientos sobre el efecto Warburg
https://pharmaceuticalintelligence.com/2015/08/05/new-insights-on-the-warburg-effect-2-2/
Larry H. Bernstein, MD, FCAP
2.2.1 Implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg
Larry H. Bernstein, MD, FCAP
2.2.2 Papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer
Larry H. Bernstein, MD, FCAP
2.2.3 El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada
Larry H. Bernstein, MD, FCAP
2.2.4 La medicina personalizada aún no ha llegado
https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/
Larry H. Bernstein, MD, FCAP
2.2.5 Biomarcadores para la oncología personalizada: avances recientes y futuros retos
Larry H. Bernstein, MD, FCAP
2.2.6 Oncología personalizada: avances recientes y futuros retos
Larry H. Bernstein, MD, FCAP
2.2.7 Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer
Larry H. Bernstein, MD, FCAP
2.2.8 Límites de la predicción en la medicina personalizada: una visión general
Larry H. Bernstein, MD, FCAP
2.2.9 La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida
Larry H. Bernstein, MD, FCAP
2.2.10 El camino hacia la medicina personalizada
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
2.3 Patología molecular de la progresión del cáncer
2.3.1 Modelo halstediano de la progresión del cáncer
https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/
Larry H. Bernstein, MD, FCAP
2.3.2 La patología molecular de la progresión del cáncer de mama
Tilda Barliya, PhD
2.3.3 Enfermedades metastásicas
https://pharmaceuticalintelligence.com/2015/05/01/metastatic-disease-4-3/
Larry H. Bernstein, MD, FCAP
2.3.4 CD47: tratamiento antineoplásico dirigido
https://pharmaceuticalintelligence.com/2013/05/07/cd47-target-therapy-for-cancer/
Tilda Barliya, PhD
2.3.5 Cáncer de colon
https://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/
Tilda Barliya, PhD
2.3.6 Cáncer renal: relación entre el metabolismo en el ciclo de Krebs y la modulación de las histonas
Demet Sag, Ph.D., CRA, GCP
2.3.7 Síndrome mielodisplásico y leucemia mieloide aguda tras la quimioterapia adyuvante
Larry H. Bernstein, MD, FCAP
2.3.8 Metástasis en los ganglios linfáticos
https://pharmaceuticalintelligence.com/2015/10/14/lymph-node-metastases/
Larry H. Bernstein, MD, FCAP
2.3.9 ¿Especies reactivas de oxígeno en el cáncer de próstata?
https://pharmaceuticalintelligence.com/2015/10/15/reactive-oxygen-species-in-prostate-cancer/
Larry H. Bernstein, MD, FCAP
2.3.10 Glioma, glioblastoma y neurooncología
https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/
Larry H. Bernstein, MD, FCAP
2.4 Progresión del cáncer hematológico
2.4.1 Neoplasias hematológicas malignas
Larry H. Bernstein, MD, FCAP
2.4.2 Clasificación de los cánceres hematológicos
https://pharmaceuticalintelligence.com/2015/08/11/hematological-cancer-classification-2-4/
Larry H. Bernstein, MD, FCAP
2.4.3 Diagnóstico de las neoplasias hematológicas malignas
https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancy-diagnostics-4-2-3/
Larry H. Bernstein, MD, FCAP
2.4.4 Tratamiento de las leucemias agudas
https://pharmaceuticalintelligence.com/2015/10/05/treatment-of-acute-leukemias/
Larry H. Bernstein, MD, FCAP
2.4.5 Tratamiento de las leucemias crónicas
https://pharmaceuticalintelligence.com/2015/08/11/treatment-for-chronic-leukemias-2-4-4b/
Larry H. Bernstein, MD, FCAP
2.4.6 Tratamiento de los linfomas
https://pharmaceuticalintelligence.com/2015/08/11/treatment-of-lymphomas-2-4-4c/
Larry H. Bernstein, MD, FCAP
2.4.7 Tratamientos para linfomas y leucemias
https://pharmaceuticalintelligence.com/2015/08/11/treatments-for-leukemias-and-lymphomas-4-2-5/
Larry H. Bernstein, MD, FCAP
2.4.8 Actualización sobre la leucemia mieloide crónica
https://pharmaceuticalintelligence.com/2015/10/14/update-on-chronic-myeloid-leukemia/
Larry H. Bernstein, MD, FCAP
2.4.9 El cáncer de páncreas en la encrucijada del metabolismo
https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/
Demet Sag, Ph.D., CRA, GCP
2.4.10 Mejor medicación contra el cáncer
https://pharmaceuticalintelligence.com/2015/10/09/better-cancer-medication/
Larry H. Bernstein, MD, FCAP
Resumen
Capítulo 3: Medicina personalizada contra el cáncer
Introducción
3.0 Medicina personalizada contra el cáncer: El testimonio de Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2015/05/12/personalized-medicine-in-cancer-3/
Larry H. Bernstein, MD, FCAP
3.1 El camino hacia la medicina personalizada
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
3.2 El papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer
Larry H. Bernstein, MD, FCAP
3.3 El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada
Larry H. Bernstein, MD, FCAP
3.4 La medicina personalizada aún no ha llegado
https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/
Larry H. Bernstein, MD, FCAP
3.5 Biomarcadores para la oncología personalizada: avances recientes y futuros retos.
Larry H. Bernstein, MD, FCAP
3.5.1 Firma de hipermetilación de ZNF154
https://pharmaceuticalintelligence.com/2016/02/05/znf154-hypermethylation-signature/
Larry H. Bernstein, MD, FCAP
3.6 Oncología personalizada: avances recientes y futuros retos
Larry H. Bernstein, MD, FCAP
3.7 Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer
Larry H. Bernstein, MD, FCAP
3.8 Límites de la predicción en la medicina personalizada: una visión general
Larry H. Bernstein, MD, FCAP
3.9 La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida
Larry H. Bernstein, MD, FCAP
3.10 El camino hacia la medicina personalizada
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
3.11 Medicina personalizada y cáncer de colon
https://pharmaceuticalintelligence.com/2013/05/25/personalized-medicine-and-colon-cancer/
Tilda Barliya, PhD
3.12 Medicina personalizada: la iniciativa de California
https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/
Demet Sag, PhD, CRA, GCP
Resumen
Segunda parte:
Oncología intervencionista
Capítulo 4: Cirugía
Introducción
4.1 Papel del sistema nervioso central en las metástasis del cáncer: estudio de los NIH
https://pubmed.ncbi.nlm.nih.gov/23599747/ DOI: 10.3892/ol.2013.1168
Sha Li 1, Yanlai Sun, Dongwei Gao
4.1.1 El dolor en las metástasis
Demet Sag, PhD, CRA, GCP
4.2 Tecnología de imagen en la cirugía del cáncer
https://pharmaceuticalintelligence.com/2015/08/05/imaging-technology-in-cancer-surgery/
Dror Nir, PhD
4.3 Enfermedades metastásicas: ejemplos de procedimientos quirúrgicos en el tratamiento del cáncer
4.3.1 Técnicas de ablación en la oncología intervencionista
https://pharmaceuticalintelligence.com/2015/08/05/ablation-techniques-in-interventional-oncology/
Dror Nir, PhD
4.3.2 Cánceres no hematológicos
https://pharmaceuticalintelligence.com/2015/05/01/nonhematological-cancers-4-2/
Larry H. Bernstein, MD, FCAP
4.3.3 Ejemplos de procedimientos quirúrgicos
https://pharmaceuticalintelligence.com/2015/05/02/examples-of-surgical-procedures-4-4/
Larry H. Bernstein, MD, FCAP
4.4 Procedimientos de vanguardia en la oncología intervencionista: ablación por radiofrecuencia, quimioembolización transarterial, ablación por microondas y electroporación irreversible (IRE)
Larry H. Bernstein, MD, FCAP
4.4.1 Terapia fotodinámica a nanoescala
https://pharmaceuticalintelligence.com/2016/02/05/nanoscale-photodynamic-therapy/
Larry H. Bernstein, MD, FCAP
4.4.2 Alcalinización para bloquear la metástasis tumoral
https://pharmaceuticalintelligence.com/2016/02/05/alkalinizing-to-block-tumor-metastasis/
Larry H. Bernstein, MD, FCAP
4.5 Cuidados paliativos
https://pharmaceuticalintelligence.com/2015/05/14/palliative-care_4-6/
Larry H. Bernstein, MD, FCAP
Resumen
Capítulo 5: Radioterapia
Introducción
5.1 Radioterapia de haz externo (EBRT) y braquiterapia
https://pharmaceuticalintelligence.com/2015/10/10/external-beam-radiation-therapy-and-brachytherapy/
Larry H. Bernstein, MD, FCAP
5.2 Tomografía fotoacústica
https://pharmaceuticalintelligence.com/2013/07/27/photoacoustic-tomography/
Tilda Barliya PhD
Capítulo 6: Quimioterapia
Introducción del Dr. Stephen J. Williams, PhD
6.1 Fármacos citotóxicos
6.1.1 ¿Por qué la quimioterapia citotóxica sigue siendo un pilar fundamental de muchos regímenes de quimioterapia?
Stephen J. Williams, PhD
6.1.1.2 Nueva generación de compuestos platinados para eludir la resistencia
Stephen J. Williams, PhD
6.1.1.3 Nuevos inhibidores de la topoisomerasa: agentes de origen natural
https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/
Stephen J. Williams, PhD
6.1.1.4 ¿Son los inhibidores de la ciclina D una buena diana?
Stephen J. Williams, PhD
6.1.2 Timosina alfa1 y melanoma
https://pharmaceuticalintelligence.com/2013/02/15/thymosin-alpha1-in-melanoma/
Tilda Barliya, PhD
6.1.3 Paclitaxel: farmacocinética (FC), farmacodinámica (FD) y farmacogenómica (FG)
https://pharmaceuticalintelligence.com/2012/11/27/paclitaxel/
Tilda Barliya, PhD
6.1.4 Comparación entre paclitaxel y Abraxane (paclitaxel ligado a albúmina)
https://pharmaceuticalintelligence.com/2012/11/17/paclitaxel-vs-abraxane-albumin-bound-paclitaxel/
Tilda Barliya, PhD
6.1.5 Según un experto sobre el cáncer, la batalla debe reorientarse para adelantarse a la enfermedad
Stephen J. Williams, PhD
6.1.6 Resistencia a los tratamientos citotóxicos: revisión actual
6.1.6.1 ¿Se puede considerar que la heterogeneidad intratumoral es un mecanismo de resistencia?
Stephen J. Williams, PhD
6.1.6.2 Las células madre del cáncer como mecanismo de resistencia
https://pharmaceuticalintelligence.com/2015/10/14/cancer-stem-cells-as-a-mechanism-of-resistance/
Stephen J. Williams, PhD
6.1.7 Nuevos inhibidores de la topoisomerasa en ensayos clínicos
https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/
Stephen J. Williams, PhD
6.2 Neoplasias hematológicas malignas
https://pharmaceuticalintelligence.com/2015/05/11/hematologic-malignancies-6-2/
Larry H. Bernstein, MD, FCAP
6.3 Tratamientos paliativos
6.3.1 Bifosfonatos y metástasis óseas
https://pharmaceuticalintelligence.com/2015/09/14/bisphosphonatesandbonemetabolism/
Stephen J. Williams, PhD
6.3.2 Transfusiones de sangre
https://pharmaceuticalintelligence.com/2015/10/10/blood-transfusions/
Larry H. Bernstein, MD, FCAP
6.3.3 Eritropoyetina
https://pharmaceuticalintelligence.com/2015/10/10/erythropoietin/
Larry H. Bernstein, MD, FCAP
6.3.4 G-CSF (factor estimulante de colonias de granulocitos)
https://pharmaceuticalintelligence.com/2015/10/10/granulocyte-colony-stimulating-factor-g-csf/
Larry H. Bernstein, MD, FCAP
6.3.5 Intercambio de plasma (plasmaféresis)
https://pharmaceuticalintelligence.com/2015/10/10/plasmapheresis/
Larry H. Bernstein, MD, FCAP
6.3.6 Transfusiones de plaquetas
https://pharmaceuticalintelligence.com/2015/10/10/platelet-transfusions/
Larry H. Bernstein, MD, FCAP
6.3.7 Esteroides, inflamación y tratamiento con CAR-T
https://pharmaceuticalintelligence.com/2015/09/14/steroids-inflammation-and-car-t-therapy/
Stephen J. Williams, PhD
6.3.8 Opioides, dolor y cuidados paliativos
https://pharmaceuticalintelligence.com/2015/09/14/opioids-pain-and-palliative-care/
Stephen J. Williams, PhD
Resumen
Tercera parte:
inmunoterapia, opciones de fármacos biológicos y terapias dirigidas al sistema inmunitario del paciente oncológico
Introducción por el Dr. Larry H Bernstein, MD, FCAP
Introduction by Dr. Larry H Bernstein, MD, FCAP
Capítulo 7: Inmunoterapia basada en virus y vacunas
Introducción
7.1 Bacilo de Calmette-Guérin (BCG) para el cáncer superficial de vejiga
Dr. Larry H Bernstein, MD, FCAP
7.2 Resultados del bacilo de Calmette-Guérin (BCG) para el cáncer de vejiga superficial
Demet Sag, PhD, CRA, GCP
7.3 Virus del papiloma para el cáncer cervicouterino
https://pharmaceuticalintelligence.com/2015/10/10/papilloma-viruses-for-cervical-cancer/
Dr. Larry H Bernstein, MD, FCAP
7.4 Observaciones sobre el virus del papiloma humano y el cáncer
https://pharmaceuticalintelligence.com/2015/10/13/huamn-papilloma-virus-and-cancer/
Demet Sag, PhD, CRA, GCP
7.5 Inhibidor de la proteína NS5A del VHC de Theravance, Inc. para tratar la infección por el virus de la hepatitis C
Dr. Larry H Bernstein, MD, FCAP
7.6 La ERGE y el adenocarcinoma de esófago
https://pharmaceuticalintelligence.com/2015/10/10/gerd-and-esophageal-adenocarcinoma/
Dr. Larry H Bernstein, MD, FCAP
7.7 Helicobacter pylori
https://pharmaceuticalintelligence.com/2015/10/11/helicobacter-pylorum/
Dr. Larry H Bernstein, MD, FCAP
7.8 Virus y cáncer: un paseo por la memoria
https://pharmaceuticalintelligence.com/2015/10/12/viruses-and-cancer/
Demet Sag, PhD, CRA, GCP
7.9 En el nombre de la traducción: ¿Rebuscado? ¿Amigo o enemigo? De bacteria patógena alimentaria a convertirse en vacuna amiga
Demet Sag, PhD, CRA, GCP
Capítulo 8: Trasplante alogénico de células madre hematopoyéticas e injerto contra hospedador
8.1 Hematopoyesis
https://pharmaceuticalintelligence.com/2016/01/23/hematopoiesis/
Dr. Larry H Bernstein, MD, FCAP
8.2 Trasplante alogénico de células madre
https://pharmaceuticalintelligence.com/2015/05/14/allogeneic-stem-cell-transplantation-9-2/
Dr. Larry H Bernstein, MD, FCAP
8.3 Seguimiento de la LMA con un análisis de sangre de «células específicas»
https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/
Dr. Larry H Bernstein, MD, FCAP
8.4 La estrategia de Juno erradicó las células cancerosas en 10 de 12 pacientes con leucemia, lo que indica potencial para transformar el tratamiento de referencia en oncología
Aviva Lev-Ari, PhD, RN
Capítulo 9: Últimos avances en la inmunoterapia del cáncer
9.1 Inhibidores del punto de control
9.1.2 Artículos sobre «PD-L1»
9.1.2.1 Merck y Pfizer anuncian una alianza estratégica global sobre anticuerpos anti-PD-L1 para acelerar su presencia en la inmunooncología
Aviva Lev-Ari, PhD, RN
9.1.2.2 Politerapia inmunooncológica: implicaciones para las grandes farmacéuticas
Aviva Lev-Ari, PhD, RN
9.1.2.3 El inhibidor de PD1 atezolizumab puede ser prometedor frente al cáncer de vejiga en pacientes con alta expresión de PDL1
Stephen J. Williams, PhD
9.1.2.4 Conferencia sobre Inmunoterapia del Cáncer y Simposio sobre Biomarcadores para la Inmunoterapia del Cáncer, 6-11 de marzo de 2016 | Moscone North Convention Center | San Francisco, CA, EUA
Aviva Lev-Ari, PhD, RN
9.1.2.5 Nuevos biomarcadores para la inmunoterapia del cáncer
Dr. Larry H Bernstein, MD, FCAP
9.1.2.6 Nuevos hallazgos en el cáncer de endometrio: mutaciones, tipos moleculares y respuestas inmunitarias evocadas por los subtipos de cáncer de endometrio y ovario propensos a las mutaciones
Aviva Lev-Ari, PhD, RN
9.1.2.7 Cáncer de páncreas: genética, genómica e inmunoterapia
https://pharmaceuticalintelligence.com/2013/04/11/update-on-pancreatic-cancer/
Tilda Barliya, PhD
9.2 Agentes coestimuladores
- CD137/41BB
- OX40
- CD27
- GITR
- CD40
9.3 Inmunomoduladores
- CTLA4
- KIR
- IDO IL-2
- IL-21
- CSF1R
- Vacunas
9.3.1 Artículos sobre CTLA4, proteína 4 asociada a los linfocitos T citotóxicos
9.3.1.1 Inmunoterapia contra el cáncer
https://pharmaceuticalintelligence.com/2015/10/27/cancer-immunotherapy/
Dr. Larry H Bernstein, MD, FCAP
9.3.1.2 La inmunoterapia combinada anti-CTLA4 y anti-PD1 muestra resultados prometedores contra el melanoma avanzado
Aviva Lev-Ari, PhD, RN
9.4 Antineoplásicos: cuatro clases de moléculas inmunooncológicas en desarrollo, incluidos los CAR-T
- Fase de desarrollo,
- Nombre del medicamento
- Nombre de la farmacéutica
- Indicación de la enfermedad objetivo
http://jpmorgan.metameetings.com/confbook/healthcare16/stash/misc/IO%20Combos.pdf
Stephen J. Williams, PhD
9.5 Señalización de CAR-T (linfocitos T con receptores de antígenos quiméricos) de quinta generación
9.5.1 Artículos sobre «CAR-T»
9.5.1.1 Los líderes en el campo de los CAR-T avanzan con esperanza y cautela
Stephen J. Williams, PhD
9.5.1.2 Tratamiento de la leucemia con CAR-T
https://pharmaceuticalintelligence.com/2015/11/05/car-t-therapy-in-leukemia/
Dr. Larry H Bernstein, MD, FCAP
9.5.1.3 Una rosa, pero con espinas. Expertos en oncología debaten sobre los retos del tratamiento con linfocitos CAR-T.
https://pharmaceuticalintelligence.com/2015/09/19/rosas-to-like/
Dr. Larry H Bernstein, MD, FCAP
Capítulo 10: Aptámeros e inhibidores peptídicos pequeños
10.1 Vacunas, péptidos pequeños, aptámeros e inmunoterapia [9]
Dr. Larry H Bernstein, MD, FCAP
10.2 Inhibidores de la angiogénesis
https://pharmaceuticalintelligence.com/2015/05/15/angiogenesis_inhibitors/
Dr. Larry H Bernstein, MD, FCAP
10.3 Inhibidor de MDM2 para el tratamiento de los cánceres
https://pharmaceuticalintelligence.com/2016/01/23/mdm2-inhibitor-for-the-treatment-of-cancers/
Dr. Larry H Bernstein, MD, FCAP
10.4 El desarrollo de las tratamientos basados en ARNip para el cáncer
Ziv Raviv, PhD
Capítulo 11: Otras novedades
11.1 Pfizer apuesta mil millones de dólares en los agentes biológicos condicionalmente activos de BioAtla | BioAcceleration™ para agentes terapéuticos proteicos
Aviva Lev-Ari, PhD, RN
11.2 Expresión génica y mecanismos de resistencia inmunitaria adaptativa en el linfoma
Dr. Larry H Bernstein, MD, FCAP
11.3 La delicada conexión entre la IDO (indolamina 2,3-deshidrogenasa) y la inmunooncología
Demet Sag, PhD, CRA, GCP
11.4 Nueva estrategia oncológica mediante el atrapamiento de fármacos
https://pharmaceuticalintelligence.com/2016/02/01/novel-oncologic-approach-by-drug-trapping/
Dr. Larry H Bernstein, MD, FCAP
11.5 Biomarcadores del cáncer
https://pharmaceuticalintelligence.com/2016/02/02/biomarkers-of-cancer/
Dr. Larry H Bernstein, MD, FCAP
11.6 Actividad enzimática causante del cáncer
https://pharmaceuticalintelligence.com/2016/02/02/cancer-causing-enzyme-activity/
Dr. Larry H Bernstein, MD, FCAP
11.7 ADN basura y cáncer de mama
https://pharmaceuticalintelligence.com/2016/02/02/junk-dna-and-breast-cancer/
Dr. Larry H Bernstein, MD, FCAP
11.8 Aptámeros y armazones
https://pharmaceuticalintelligence.com/2016/02/06/aptamers-and-scaffolds/
Dr. Larry H Bernstein, MD, FCAP
Cuarta parte:
Tratamientos hormonales
Capítulo 12: Tratamiento hormonal selectivo
12.1 Tratamiento hormonal
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.2 Papel de la progesterona en la progresión del cáncer de mama
https://pharmaceuticalintelligence.com/2013/06/25/role-of-progesterone-in-breast-cancer-progression/
Tilda Barliya, PhD
12.3 Hormonas y diferentes tipos de cáncer de ovario
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.4 La quimioterapia comparada con el tratamiento hormonal en el cáncer de ovario resistente a platino y a paclitaxel: ensayo aleatorizado del grupo alemán del estudio Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) sobre el cáncer de ovario
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.5 ¿Regresan los antagonistas de CXCR4 a la quimioterapia contra el cáncer?
Stephen J. Williams, PhD
Quinta parte:
tratamientos alternativos
Capítulo 13: Tratamientos complementarios y alternativos
13.1 Tratamientos complementarios y alternativos
Dr. Larry H Bernstein, MD, FCAP
Sexta parte:
Nanotecnología, nanopartículas y administración de fármacos
Por Tilda Barliya, PhD
Capítulo 14: Nanopartículas y administración de fármacos
14.1 Introducción a la nanotecnología en la administración de fármacos
https://pharmaceuticalintelligence.com/2012/09/28/introduction-to-nanotechnology-in-drug-delivery/
Tilda Barliya, PhD
14.1.1 Construcción de un sistema de administración de fármacos (DDS): elección de polímeros y principios activos
Tilda Barliya, PhD
14.1.2 Factores que afectan a la FC del nanotransportador
https://pharmaceuticalintelligence.com/2012/10/09/factors-affecting-the-pk-of-the-nanocarrier/
Tilda Barliya, PhD
14.2 Detección y diagnóstico por imagen
14.2.1 Detección de una sola molécula por Philip Tinnefeld
https://pharmaceuticalintelligence.com/2013/09/24/single-molecule-detection-by-philip-tinnefeld/
Tilda Barliya, PhD
14.2.2 Mesotelina: un biomarcador de detección temprana del cáncer (por Jack Andraka)
Tilda Barliya, PhD
14.2.3 Nanotecnología y resonancia magnética
https://pharmaceuticalintelligence.com/2012/10/17/nanotechnology-and-mri-imaging/
Tilda Barliya, PhD
14.2.4 Nanotecnología: detección y tratamiento del cáncer metastásico en los ganglios linfáticos
Tilda Barliya, PhD
14.2.5 Diagnóstico del cáncer de pulmón en el aliento exhalado mediante nanopartículas de oro
Tilda Barliya, PhD
14.2.6 Nanoespectroscopia avanzada
https://pharmaceuticalintelligence.com/2016/02/06/advanced-nanospectroscopy/
Dr. Larry H Bernstein, MD, FCAP
14.3 Tratamiento del cáncer
14.3.1 Tratamiento nanotecnológico del cáncer de mama
https://pharmaceuticalintelligence.com/2012/12/09/naotech-therapy-for-breast-cancer/
Tilda Barliya, PhD
14.3.2 Informe sobre el cáncer de ovario y la cirugía guiada por fluorescencia
Tilda Barliya, PhD
14.3.3 Cáncer de pulmón (CPNM), administración de fármacos y nanotecnología
Tilda Barliya, PhD
14.3.4 Cáncer de próstata y nanotecnología
https://pharmaceuticalintelligence.com/2013/02/07/prostate-cancer-and-nanotecnology/
Tilda Barliya, PhD
14.3.5 La nanotecnología aborda el cáncer cerebral
https://pharmaceuticalintelligence.com/2012/11/23/nanotechnology-tackles-brain-cancer/
Tilda Barliya, PhD
14.3.6 Leucemia linfoblástica aguda (LLA) y nanotecnología
Tilda Barliya, PhD
14.4 El ADN/ARN como diana
14.4.1 Nanotecnología del ADN
https://pharmaceuticalintelligence.com/2013/05/15/dna-nanotechnology/
Tilda Barliya, PhD
14.4.2 El desarrollo de los tratamientos basados en ARNip para el cáncer
Ziv Raviv, PhD
14.4.3 Nanotecnología, medicina personalizada y secuenciación del ADN
Tilda Barliya, PhD
14.5 Administración transdérmica de fármacos (DSS)
14.5.1 Introducción al sistema de administración transdérmica de fármacos (TDD) y a la nanotecnología
Tilda Barliya, PhD
14.5.2 Sistema de administración transdérmica de fármacos (TDD) y nanotecnología: Parte II
Tilda Barliya, PhD
14.6 Tratamiento nanotecnológico de enfermedades no cancerosas
https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-therapy-for-non-cancerous-diseases/
Dr. Larry H. Bernstein, MD, FCAP
14.6.1 Introducción a la nanotecnología y la enfermedad de Alzheimer
Tilda Barliya, PhD
14.6.2 Nanotecnología y cardiopatías
https://pharmaceuticalintelligence.com/2013/03/04/nanotechnology-and-heart-disease/
Tilda Barliya, PhD
14.6.3 Introducción a la ingeniería de tejidos; aplicaciones de la nanotecnología
Tilda Barliya, PhD
14.6.4 Nanotecnología y administración ocular de fármacos: Parte I
https://pharmaceuticalintelligence.com/2013/02/23/nanotechnology-and-ocular-drug-delivery-part-i/
Tilda Barliya, PhD
14.6.5 Regeneración ósea y nanotecnología
https://pharmaceuticalintelligence.com/2013/07/13/bone-regeneration-and-nanotechnology/
Tilda Barliya, PhD
14.6.6 Nanotecnología y tratamiento del VIH/SIDA
https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/
Tilda Barliya, PhD
14.7 Peligros de la nanotecnología
14.7.1 Inmunorreactividad de las nanopartículas
https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/
Tilda Barliya, PhD
14.7.2 Nanotecnología y cuestiones de salud
https://pharmaceuticalintelligence.com/2012/11/04/nanotechnology-and-health-issues/
Tilda Barliya, PhD
Séptima parte:
etapas de transición del cáncer
Capítulo 15: De la neoplasia maligna in situ al cáncer
Introducción
15.1 Avances en la inmunopatogenia de la diabetes y los linfomas
Dr. Larry H. Bernstein, MD, FCAP
15.2 Una sola célula arroja luz sobre la transformación maligna celular
Dr. Larry H. Bernstein, MD, FCAP
15.3 Nanosensores para el reconocimiento de proteínas y la interacción gen-proteoma
Dr. Larry H. Bernstein, MD, FCAP
15.4 Los científicos descubren cómo escapan las células cancerosas de los vasos sanguíneos
Danut Dragoi, PhD
15.5 Descifrando el epigenoma
https://pharmaceuticalintelligence.com/2016/01/28/deciphering-the-epigenome/
Dr. Larry H. Bernstein, MD, FCAP
15.6 La Universidad de Swansea utiliza inteligencia artificial para detectar el cáncer
Evelina Cohn, PhD
15.7 Factores de crecimiento, supresores y receptores en la tumorigénesis
Dr. Larry H. Bernstein, MD, FCAP
15.7.1 Puntos cuánticos
https://pharmaceuticalintelligence.com/2015/04/13/quantum-dots-7-1/
Dr. Larry H. Bernstein, MD, FCAP
15.7.2 Fármaco encapsulado en liposomas
https://pharmaceuticalintelligence.com/2015/04/13/liposomal-encapsulated-drug-7-2/
Dr. Larry H. Bernstein, MD, FCAP
15.7.3 Unión de proteínas, interacciones entre proteínas e implicaciones terapéuticas
Dr. Larry H. Bernstein, MD, FCAP
15.7.4 EpCAM
https://pharmaceuticalintelligence.com/2015/04/07/epcam-7-4/
Dr. Larry H. Bernstein, MD, FCAP
15.7.5 Regulación al alza de las vías supresoras tumorales
https://pharmaceuticalintelligence.com/2015/04/08/upregulate-tumor-suppressor-pathways-7-5/
Dr. Larry H. Bernstein, MD, FCAP
15.7.6 Manipulando las vías de señalización
https://pharmaceuticalintelligence.com/2015/04/08/manipulate-signaling-pathways-7-6/
Dr. Larry H. Bernstein, MD, FCAP
15.7.7 Actuando sobre vías específicas en los tratamientos antineoplásicos
Dr. Larry H. Bernstein, MD, FCAP
15.7.8 Sirtuinas
https://pharmaceuticalintelligence.com/2015/04/10/sirtuins-7-8/
Dr. Larry H. Bernstein, MD, FCAP
15.7.9 Factor 1 Inducible por hipoxia (HIF-1)
https://pharmaceuticalintelligence.com/2015/04/10/hypoxia-inducible-factor-1-hif-17-9/
Dr. Larry H. Bernstein, MD, FCAP
15.7.10 Señalización de Wnt/β-catenina
https://pharmaceuticalintelligence.com/2015/04/10/wnt%CE%B2-catenin-signaling-7-10/
Dr. Larry H. Bernstein, MD, FCAP
15.7.11 Actuando sobre la vía de Wnt
https://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/
Dr. Larry H. Bernstein, MD, FCAP
Resumen
Capítulo 16: Reflexiones sobre el futuro del tratamiento con anticuerpos monoclonales
Introducción
16.1 Medicina personalizada: la iniciativa de California
https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/
Demet Sag, PhD, CRA, GCP
16.2 Tratamiento con anticuerpos monoclonales: ¿lo que dice el nombre o una descripción clara?
Demet Sag, PhD, CRA, GCP
16.3 Tratamiento con anticuerpos monoclonales y su mercado
https://pharmaceuticalintelligence.com/2015/10/14/32589/
Demet Sag, PhD, CRA, GCP
16.4 Trastuzumab (Herceptin) para el cáncer de mama
https://pharmaceuticalintelligence.com/2015/10/11/trastuzumab-for-breast-cancer/
Dr. Larry H. Bernstein, MD, FCAP
16.5 Rituximab para diversas neoplasias de linfocitos B
https://pharmaceuticalintelligence.com/2015/10/11/rituximab-for-a-variety-of-b-cell-malignancies/
Dr. Larry H. Bernstein, MD, FCAP
16.6 Melanoma metastásico: la politerapia inmunoterapéutica de ipilimumab y nivolumab reduce el tamaño tumoral en el 58 % de los pacientes con cáncer de piel
Aviva Lev-Ari, PhD, RN
16.7 Tratamiento con anticuerpos monoclonales del mieloma múltiple: elotuzumab
https://pharmaceuticalintelligence.com/2016/01/23/monoclonal-antibody-treatment-of-multiple-myeloma/
Dr. Larry H. Bernstein, MD, FCAP
16.8 Fresolimumab
https://pharmaceuticalintelligence.com/2016/01/31/fresolimumab/
Stephen J. Williams, PhD
Resumen
Octava parte:
Investigación y orientaciones futuras para el tratamiento y la prevención del cáncer
Capítulo 17: El futuro de la oncología
Introducción
17.1 Nuevas estrategias para el tratamiento del cáncer
https://pharmaceuticalintelligence.com/2015/04/11/novel-approaches-to-cancer-therapy-7-12/
Dr. Larry H. Bernstein, MD, FCAP
17.2 Medicina personalizada: nuevos diagnósticos e innovación en la farmacocinética
17.2.1 Nuevos biomarcadores para la inmunoterapia del cáncer
Dr. Larry H. Bernstein, MD, FCAP
17.2.2 Nanotecnología: aptámeros para sistemas de administración específicos y mejores de medicamentos existentes
Dr. Larry H. Bernstein, MD, FCAP
17.2.3 Células madre de cánceres no hematológicos
https://pharmaceuticalintelligence.com/2015/05/22/nonhematologic-cancer-stem-cells-11-2-3/
Dr. Larry H. Bernstein, MD, FCAP
17.3 Prevención del cáncer
17.3.1 Diagnóstico precoz
https://pharmaceuticalintelligence.com/2015/10/15/early-diagnosis-early-detection-research-networks/
Stephen J. Williams, PhD
17.3.2 Nuevos métodos de diagnóstico
17.3.2.1 Combinación de tecnología de nanotubos y anticuerpos creados por ingeniería genética para detectar biomarcadores del cáncer de próstata
Stephen J. Williams, PhD
17.3.2.2 Nuevo plan para analizar de forma rutinaria a los pacientes con el fin de detectar genes cancerígenos heredados
Stephen J. Williams, PhD
17.3.2.3 Biomarcadores del cáncer
https://pharmaceuticalintelligence.com/2015/05/06/cancer-biomarkers-11-3-2-3/
Larry H. Bernstein, MD, FCAP
17.3.2.4 BRCA 1 y 2 y detección precoz del cáncer
https://pharmaceuticalintelligence.com/2015/10/11/brca-1-and-2-and-early-detection-of-cancer/
Larry H. Bernstein, MD, FCAP
17.3.2.5 Medicina personalizada: aspiraciones clínicas de las micromatrices
Stephen J. Williams, PhD
17.4 Diseño racional de inhibidores y activadores alostéricos mediante el modelo de cambio poblacional: validación in vitro y aplicación a un biosensor artificial
Stephen J. Williams, PhD
17.5 La relación entre la coagulación y el cáncer afecta a los cuidados paliativos
Demet Sag, PhD, CRA, GCP
17.6 Macrófagos asociados al tumor: ¿Siguen siendo un arma de doble filo?
Stephen J. Williams, PhD
17.7 Cáncer y nutrición
https://pharmaceuticalintelligence.com/2015/05/04/cancer-and-nutrition/
Larry H. Bernstein, MD, FCAP
17.8 Medio ambiente y cáncer
https://pharmaceuticalintelligence.com/2015/05/06/environment-and-cancer-11-3-4/
Larry H. Bernstein, MD, FCAP
Resumen
Capítulo 18: Nuevos medicamentos contra el cáncer en ensayos clínicos
18.1 Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico
Stephen J. Williams, PhD
18.2 Desarrollo de quimiorresistencia a los tratamientos dirigidos: alteraciones de la señalización celular y del cinoma
Stephen J. Williams, PhD
18.3 Nuevos mecanismos de resistencia a nuevos agentes
https://pharmaceuticalintelligence.com/2016/01/12/novel-mechanisms-of-resistance-to-novel-agents/
Larry H. Bernstein, MD, FCAP and Stephen J. Williams, PhD
18.4 Respuestas tóxicas registradas a los nuevos fármacos en ensayos clínicos
18.4.1 La toxicidad hepática detiene el ensayo clínico de un antagonista de la PAI para tumores sólidos avanzados
Stephen J. Williams, PhD
18.4.2 Buenas y malas noticias sobre el tratamiento del cáncer de ovario
Stephen J. Williams, PhD
18.4.3 Surgen nuevos mecanismos de toxicidad
Stephen J. Williams, PhD
18.5 Los NIH estudian las directrices de tratamiento con CAR-T: informe del Comité Consultivo sobre el ADN recombinante
Stephen J. Williams, PhD
18.6 Innovación en la inteligencia biofarmacéutica del cáncer
Larry H. Bernstein, MD, FCAP
Capítulo 19: Relaciones entre el cáncer y las enfermedades cardiovasculares por Aviva Lev-Ari, PhD y RN
19.1 Cáncer, respiración y el peligro del corazón en los pacientes con cáncer
Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN
19.2 Reuben Shaw, doctor en genética e investigador del Instituto Salk: el metabolismo influye en el cáncer
Aviva Lev-Ari, PhD, RN
19.3 Tumores cardíacos: etiología y clasificación
https://pharmaceuticalintelligence.com/2014/01/08/heart-tumors-etiology-and-classification/
Aviva Lev-Ari, PhD, RN
19.4 Amiloidosis con miocardiopatía
https://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/
Larry H. Bernstein, MD FCAP
19.5 Estabilizadores que previenen la toxicidad amiloidótica de los cardiomiocitos mediada por la transtiretina
Larry H. Bernstein, MD FCAP
19.6 Ciencia de los síntomas del cáncer: sobre los mecanismos que subyacen a la expresión de los síntomas relacionados con el cáncer
Aviva Lev-Ari, PhD, RN
19.7 Tratamientos
19.7.1 Programas de cardiooncología y oncocardiología: tratamiento de pacientes con cáncer con antecedentes de enfermedades cardiovasculares
Aviva Lev-Ari, PhD, RN
19.7.2 Radioterapia y quimioterapia: el riesgo farmacológico de desarrollar enfermedades cardiovasculares
https://pharmaceuticalintelligence.com/2014/01/08/20316/
Aviva Lev-Ari, PhD, RN
19.8 Tercera Conferencia Anual de la Red Canadiense de Oncología Cardíaca, 20 y 21 de junio de 2013, Centro de Convenciones de Ottawa
Aviva Lev-Ari, PhD, RN
Capítulo 20: Investigación del cáncer en Technion, Instituto Tecnológico de Israel
20.1 Avances recientes en la investigación del cáncer en Technion, Instituto Tecnológico de Israel, 2015
Stephen J. Williams, PhD
20.2 Technion: orientaciones en la investigación del cáncer
20.2.1 Avances médicos: un investigador israelí predice dónde se extenderá el cáncer
Evenila Cohn, PhD
20.2.2 El cáncer de páncreas en la encrucijada del metabolismo
https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/
Demet Sag, PhD, CRA, GCP
20.2.3 Lista de avances en la investigación del cáncer y el desarrollo de fármacos oncológicos por parte de los premiados por el Fondo de Investigación del Cáncer de Israel
Aviva Lev-Ari, PhD, RN
20.2.4 Laboratorios de investigación sobre el cáncer en la Facultad de Medicina del Technion: Centro de Investigación del Cáncer y Biología Vascular Janet y David Polak
Aviva Lev-Ari, PhD, RN
20.2.5 Inmunidad y defensa del hospedador: bibliografía de investigación en el Technion
Aviva Lev-Ari, PhD, RN
20.2.6 Interacciones hospedador-tumor durante el tratamiento del cáncer: laboratorio del Dr. Yuval Shaked en el Technion
Aviva Lev-Ari, PhD, RN
20.3 Technion: acuerdos, asociaciones y colaboraciones
20.3.1 La empresa emergente de inmunoterapia celular universal de nueva generación Adicet Bio, de Menlo Park, California, se lanza con una financiación de 51 millones de dólares por parte de OrbiMed
Aviva Lev-Ari, PhD, RN
20.3.2 Soluciones para el mieloma múltiple, un cáncer formado por células plasmáticas malignas: colaboración de la NYU y el Centro Integral del Cáncer del Technion
Aviva Lev-Ari, PhD, RN
20.3.3 Biomarcadores del cáncer detectados con un alcoholímetro: esfuerzo colaborativo de tres universidades
Aviva Lev-Ari, PhD, RN
20.3.4 El Technion creó el centro de biología estructural más avanzado de Israel
Aviva Lev-Ari, PhD, RN
20.3.5 Instituto de Innovación Technion-Cornell en Nueva York: los investigadores postdoctorales mantienen la licencia exclusiva de su propiedad intelectual y reciben una cantidad fija de capital si crean una empresa subsidiaria
Aviva Lev-Ari, PhD, RN
Epílogo: implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg
Dr. Larry H. Bernstein, MD, FCAP
Serie C: libros electrónicos acerca del cáncer y la oncología
Tratamientos contra el cáncer:
Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos
Cancer Therapies:
Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery
SEGUNDO VOLUMEN
On com since 5/18/2017
http://www.amazon.com/dp/B071VQ6YYK
PART B:
The eTOCs in Bi-lingual format:
Spanish and English in Text format
Serie C: libros electrónicos acerca del cáncer y la oncología
Consultor de contenidos de la serie C: Larry H. Bernstein, MD, FCAP
SEGUNDO VOLUMEN
Tratamientos contra el cáncer:
Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos
Traducción a español
(Libro 2 de la serie C) en Amazon.com desde el 18/05/2017
2017
http://www.amazon.com/dp/B071VQ6YYK
Autores, redactores y editores
y
Autores y redactores invitados
Tilda Barliya, PhD, tildabarliya@gmail.com
Demet Sag, PhD, demet.sag@gmail.com
Dror Nir, PhD, dror.nir@radbee.com
Ziv Raviv, PhD zraviv06@gmail.com
Danut Dragoi, PhD, Danut.daa@gmail.com
Evelina Cohn, PhD, ecohn2011@yahoo.com
Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu
Leaders in Pharmaceutical Business Intelligence, Boston
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
Series C: e-Books on Cancer & Oncology
Series C Content Consultant: Larry H. Bernstein, MD, FCAP
VOLUME TWO
Cancer Therapies:
Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery
(Series C Book 2) on Amazon.com since 5/18/2017
2017
http://www.amazon.com/dp/B071VQ6YYK
Authors, Curators and Editors
and
Guest Authors and Curators
Tilda Barliya, PhD, tildabarliya@gmail.com
Demet Sag, PhD, demet.sag@gmail.com
Dror Nir, PhD, dror.nir@radbee.com
Ziv Raviv, PhD zraviv06@gmail.com
Danut Dragoi, PhD, Danut.daa@gmail.com
Evelina Cohn, PhD, ecohn2011@yahoo.com
Aviva Lev-Ari, PhD, RN avivalev-ari@alum.berkeley.edu
Leaders in Pharmaceutical Business Intelligence, Boston
Editor-in-Chief BioMed e-Series of e-Books
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
ENLACE a otros libros electrónicos sobre el cáncer en Amazon.com de nuestro equipo
Biología del cáncer y genómica para el diagnóstico de la enfermedad
(Libro 1 de la serie C) en Amazon.com desde el 11/08/2015
2015
Traducción a español
http://www.amazon.com/dp/B013RVYR2K
Stephen J. Williams, PhDeditor principal
Leaders in Pharmaceutical Business Intelligence, Boston
Redactora jefe de la serie de libros electrónicos BioMed
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
LINK to other e-Books on Cancer on Amazon.com by Our Team
Cancer Biology and Genomics for Disease Diagnosis
(Series C Book 1) on Amazon.com since 8/11/2015
2015
http://www.amazon.com/dp/B013RVYR2K
Stephen J. Williams, PhD, Senior Editor
Leaders in Pharmaceutical Business Intelligence, Boston
Editor-in-Chief BioMed e-Series of e-Books
Leaders in Pharmaceutical Business Intelligence, Boston
avivalev-ari@alum.berkeley.edu
Segundo volumen: Lista de colaboradores y biografía de los autores
Volume Two: List of Contributors and Authors Biography
Autor, redactor y editor:
Author, Curator and Editor:
Prefacio, introducción del volumen, introducciones y resumen de todos los capítulos, 1.1, 1.2, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1,2,8, 2.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.3.1, 2.3.3, 2.3.7, 2.3.8, 2.3.9, 2.3.10, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.10, 3.0, 3.1 – 3.10, 4.1.1, 4.3.2, 4.3.3, 4.4, 4.4.1, 4.4.2, 4.5, 5.1, 6.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 9.1.2.5, 9.3.1.1, 9.5.1.2, 9.5.1.3, 10.1, 10.2, 10.3, 11.2, 11.4, 11.5, 11.6, 11.7, 11.8, 12.1, 12.3, 12.4, 13.1, 14.2.6, 14.6, 15.1, 15.2, 15.3, 15.5, 15.7.1 – 15.7.11, 16.4, 16.5, 16.7, 17.1, 17.2.1, 17.2.2, 17.2.3, 17.3.2.3, 17.3.2.4, 17.7, 17.8, 18.6, 19.1, 19.4, 19.5, epílogo
Preface, Volume Introduction, Introductions and Summary of all Chapters, 1.1, 1.2, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7, 1,2,8, 2.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.3.1, 2.3.3, 2.3.7, 2.3.8, 2.3.9, 2.3.10, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.10, 3.0, 3.1 – 3.10, 4.1.1, 4.3.2, 4.3.3, 4.4, 4.4.1, 4.4.2, 4.5, 5.1, 6.2, 6.3.2, 6.3.3, 6.3.4, 6.3.5, 6.3.6, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 9.1.2.5, 9.3.1.1, 9.5.1.2, 9.5.1.3, 10.1, 10.2, 10.3, 11.2, 11.4, 11.5, 11.6, 11.7, 11.8, 12.1, 12.3, 12.4, 13.1, 14.2.6, 14.6, 15.1, 15.2, 15.3, 15.5, 15.7.1 – 15.7.11, 16.4, 16.5, 16.7, 17.1, 17.2.1, 17.2.2, 17.2.3, 17.3.2.3, 17.3.2.4, 17.7, 17.8, 18.6, 19.1, 19.4, 19.5, Epilogue
Author, Curator and Editor:
Introducciones y resúmenes de los capítulos, 6.1.1, 6.1.1.2, 6.1.1.3, 6.1.1.4, 6.1.5, 6.1.6, 6.1.6.1, 6.1.6.2, 6.1.7, 6.3, 6.3.7, 6.3.8, 9.1.2.3, 9.5.1.1, 12.5, 16.8, 17.3.1, 17.3.2.1, 17.3.2.2, 17.3.2.5, 17.4, 17.6, 18.1, 18.2, 18.3, 18.4.1, 18.4.2, 19.4.3, 18.5, 20.1
Chapter Introductions and Summaries, 6.1.1, 6.1.1.2, 6.1.1.3, 6.1.1.4, 6.1.5, 6.1.6, 6.1.6.1, 6.1.6.2, 6.1.7, 6.3, 6.3.7, 6.3.8, 9.1.2.3, 9.5.1.1, 12.5, 16.8, 17.3.1, 17.3.2.1, 17.3.2.2, 17.3.2.5, 17.4, 17.6, 18.1, 18.2, 18.3, 18.4.1, 18.4.2, 19.4.3, 18.5, 20.1
Guest Authors and Curators:
4.2, 4.3.1
1.3.1, 1.3.3. 2.3.2, 2.2.4, 2.3.5, 3.11, 5.2, 6.1.2, 6.1.3, 6.1.4, 9.1.2.7, 12.2, 14.1, 14.1.1, 14.1.2, 14.2, 14.2.1, 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3, 14.3.1, 14.3.2, 14.3.3, 14.3.4, 14.3.5, 14.3.6, 14.4.1, 14.4.3, 14.5.1, 14.5.2, 14.6.1, 14.6.2, 14.6.3, 14.6.4, 14.6.5, 14.6.6, 14.7, 14.7.1, 14.7.2
2.3.6, 2.4.9, 3.12, 7.2, 7.4, 7.8, 7.9, 11.3, 16.1, 16.2, 16.3, 17.5, 20.2.2
10.4, 14.4.2
15.4
15.6, 20.2.1
1.3.2, 8.4, 9.1.2.1, 9.1.2.2, 9.1.2.4, 9.1.2.6, 9.3.1.2, 11.1, 16.6, 19.1, 19.2, 19.3, 19.6, 19.7.1, 19.7.2, 19.8, 20.2.3, 20.2.4, 20.2.5, 20.2.6, 20.3.1, 20.3.2, 20.3.3, 20.3.4, 20.3.5
Indice de contenidos electrónico (IDCe)
electronic Table of Contents (eTOCs)
Los enlaces indicados llevan al contenido original en inglés
MD | Licenciado/a en medicina y cirugía (Estados Unidos) |
PhD | Doctorado/a |
RN | Enfermero/a titulado/a (National Board of Nursing Registration) |
FCAP | Miembro distinguido (Fellow) del Colegio de Anatomopatólogos de los Estados Unidos |
Ph.D | Doctorado/a |
CRA | CRA |
GCP | GCP |
PREFACIO por Larry H. Bernstein, MD, FCAP
PREFACE by Larry H. Bernstein, MD, FCAP
Introducción a los tratamientos antineoplásicos por Larry H. Bernstein, MD, FCAP
Introduction to Cancer Therapies by Larry H. Bernstein, MD, FCAP
Primera parte:
Farmacoterapia dirigida genómica y metabólica del cáncer
Part One:
Cancer Genomic and Metabolic Targeted Pharmacotherapy
Capítulo 1: Mirando en las profundidades del metaboloma del cáncer
Chapter 1: Looking Into the Depths of the Cancer Metabolome
Introducción
Introduction
1.1 Nuevos métodos para el estudio de la replicación, el crecimiento y la regulación celular
1.1 New methods for Study of Cellular Replication, Growth, and Regulation
Larry H. Bernstein, MD, FCAP
1.2 Genómica y epigenética: errores genéticos y metodologías en el cáncer y otras enfermedades
1.2 Genomics and Epigenetics: Genetic Errors and Methodologies – Cancer and Other Diseases
https://pharmaceuticalintelligence.com/2015/03/25/genomics-and-epigenetics/
Larry H. Bernstein, MD, FCAP
1.2.1 Roturas bicatenarias del ADN
1.2.1 DNA double strand breaks
https://www.nature.com/articles/nbt.3101 https://doi.org/10.1038/nbt.3101
Richard L Frock, et al
1.2.2 iARN: acerca de la transcripción y el control metabólico
1.2.2 RNAi – On Transcription and Metabolic Control
https://pharmaceuticalintelligence.com/2015/03/26/rnai/
Larry H. Bernstein, MD, FCAP
1.2.3 CRISPR/Cas9: aportaciones sobre la estructura y la función de las endorribonucleasas, su papel en la inmunidad y sus aplicaciones en la ingeniería genómica
1.2.3 CRISPR/Cas9: Contributions on Endoribonuclease Structure and Function, Role in Immunity and Applications in Genome Engineering
https://pharmaceuticalintelligence.com/2015/03/27/crisprcas9/
Larry H. Bernstein, MD, FCAP
1.2.4 La perspectiva metabólica de la expresión epigenética
1.2.4 The Metabolic View of Epigenetic Expression
https://pharmaceuticalintelligence.com/2015/03/28/the-metabolic-view-of-epigenetic-expression/
Larry H. Bernstein, MD, FCAP
1.2.5 Cómo «agarran» las células cancerosas a sus vecinas y las «atrapan»
1.2.5 How Cancer Cells “Grab” Neighbors and “Reel them in”
https://pharmaceuticalintelligence.com/2016/02/07/how-cancer-cells-grab-neighbors-and-reel-them-in/
Larry H. Bernstein, MD, FCAP
1.2.6 Troncalidad del cáncer colorrectal y ERK
1.2.6 Colorectal cancer stemness and ERK
https://pharmaceuticalintelligence.com/2016/02/06/colorectal-cancer-stemness-and-erk/
Larry H. Bernstein, MD, FCAP
1.3 Oncología pediátrica
1.3 Oncology in Childhood
1.3.1 Neuroblastoma: una revisión
1.3.1 Neuroblastoma: A review
https://pharmaceuticalintelligence.com/2013/06/01/neuroblastoma-a-review/
Tilda Barliya, PhD
1.3.2 El origen genético de la leucemia linfoblástica aguda (LLA) infantil
1.3.2 The Genetic Origin of Childhood Acute Lymphoblastic Leukemia (ALL)
Aviva Lev-Ari, PhD, RN
1.3.3 Leucemia linfoblástica aguda y trasplante de médula ósea
1.3.3 Acute Lymphoblastic Leukemia and Bone Marrow Transplantation
Tilda Barliya, PhD
Resumen
Summary
Capítulo 2: Encontrando la desregulación en las células cancerosas
Chapter 2: Finding Dysregulation in the Cancer Cell
Introducción
Introduction
2.1 Revisión del efecto Warburg
2.1 Warburg Effect Revisited
https://pharmaceuticalintelligence.com/2015/03/30/warburg-effect-revisited-2/
Larry H. Bernstein, MD, FCAP
2.1.2 Refinando la hipótesis de Warburg
2.1.2 Refined Warburg hypothesis
https://pharmaceuticalintelligence.com/2015/04/01/refined-warburg-hypothesis-2-1-2/
Larry H. Bernstein, MD, FCAP
2.1.3 El efecto Warburg y la regulación mitocondrial
2.1.3 Warburg Effect and Mitochondrial Regulation
https://pharmaceuticalintelligence.com/2015/04/01/warburg-effect-and-mitochondrial-regulation-2-1-3/
Larry H. Bernstein, MD, FCAP
2.1.4 La acumulación de 2-hidroxiglutarato no sirve como biomarcador de la progresión maligna de los gliomas de bajo grado con mutación de IDH
2.1.4 Accumulation of 2-hydroxyglutarate is not a biomarker for malignant progression of IDH-mutated low grade gliomas
Larry H. Bernstein, MD, FCAP
2.1.5 Isocitrato··deshidrogenasa mitocondrial (IDH) y variantes
2.1.5 Mitochondrial Isocitrate Dehydrogenase (IDH) and variants
Larry H. Bernstein, MD, FCAP
2.1.6 Nucleótidos de piridina mitocondriales y la cadena de transporte de electrones
2.1.6 Mitochondrial pyridine nucleotides and Electron Transport Chain
Larry H. Bernstein, MD, FCAP
2.1.7 Autofagia
2.1.7 Autophagy
https://pharmaceuticalintelligence.com/2015/04/03/autophagy/
Larry H. Bernstein, MD, FCAP
2.2 Nuevos conocimientos sobre el efecto Warburg
2.2 New insights on the Warburg Effect
https://pharmaceuticalintelligence.com/2015/08/05/new-insights-on-the-warburg-effect-2-2/
Larry H. Bernstein, MD, FCAP
2.2.1 Implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg
2.2.1 Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’
Larry H. Bernstein, MD, FCAP
2.2.2 Papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer
2.2.2 Role of Nanobiotechnology in Developing Personalized Medicine for Cancer
Larry H. Bernstein, MD, FCAP
2.2.3 El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada
2.2.3 The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and Personalized Medicine
Larry H. Bernstein, MD, FCAP
2.2.4 La medicina personalizada aún no ha llegado
2.2.4 Personalized Medicine is not yet here
https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/
Larry H. Bernstein, MD, FCAP
2.2.5 Biomarcadores para la oncología personalizada: avances recientes y futuros retos
2.2.5 Biomarkers for personalized oncology: recent advances and future challenges
Larry H. Bernstein, MD, FCAP
2.2.6 Oncología personalizada: avances recientes y futuros retos
2.2.6 Personalized oncology: recent advances and future challenges
Larry H. Bernstein, MD, FCAP
2.2.7 Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer
2.2.7 Pharmacogenomic biomarkers for personalized cancer treatment
Larry H. Bernstein, MD, FCAP
2.2.8 Límites de la predicción en la medicina personalizada: una visión general
2.2.8 Limits to forecasting in personalized medicine: An overview
Larry H. Bernstein, MD, FCAP
2.2.9 La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida
2.2.9 The genome editing toolbox: a spectrum of approaches for targeted modification
Larry H. Bernstein, MD, FCAP
2.2.10 El camino hacia la medicina personalizada
2.2.10 The Path to Personalized Medicine
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
2.3 Patología molecular de la progresión del cáncer
2.3 Molecular Pathology of Cancer Progression
2.3.1 Modelo halstediano de la progresión del cáncer
2.3.1 Halstedian Model of Cancer Progression
https://pharmaceuticalintelligence.com/2015/04/30/halstedian-model-of-cancer-progression/
Larry H. Bernstein, MD, FCAP
2.3.2 La patología molecular de la progresión del cáncer de mama
2.3.2 The Molecular Pathology of Breast Cancer Progression
Tilda Barliya, PhD
2.3.3 Enfermedades metastásicas
2.3.3 Metastatic Diseases
https://pharmaceuticalintelligence.com/2015/05/01/metastatic-disease-4-3/
Larry H. Bernstein, MD, FCAP
2.3.4 CD47: tratamiento antineoplásico dirigido
2.3.4 CD47: Target Therapy for Cancer
https://pharmaceuticalintelligence.com/2013/05/07/cd47-target-therapy-for-cancer/
Tilda Barliya, PhD
2.3.5 Cáncer de colon
2.3.5 Colon Cancer
https://pharmaceuticalintelligence.com/2013/04/30/colon-cancer/
Tilda Barliya, PhD
2.3.6 Cáncer renal: relación entre el metabolismo en el ciclo de Krebs y la modulación de las histonas
2.3.6 Renal (Kidney) Cancer: Connections in Metabolism at Krebs cycle and Histone Modulation
Demet Sag, Ph.D., CRA, GCP
2.3.7 Síndrome mielodisplásico y leucemia mieloide aguda tras la quimioterapia adyuvante
2.3.7 Myelodysplastic syndrome and acute myeloid leukemia following adjuvant chemotherapy
Larry H. Bernstein, MD, FCAP
2.3.8 Metástasis en los ganglios linfáticos
2.3.8 Lymph Node Metastases
https://pharmaceuticalintelligence.com/2015/10/14/lymph-node-metastases/
Larry H. Bernstein, MD, FCAP
2.3.9 ¿Especies reactivas de oxígeno en el cáncer de próstata?
2.3.9 Reactive Oxygen species in prostate cancer?
https://pharmaceuticalintelligence.com/2015/10/15/reactive-oxygen-species-in-prostate-cancer/
Larry H. Bernstein, MD, FCAP
2.3.10 Glioma, glioblastoma y neurooncología
2.3.10 Glioma, Glioblastoma and Neurooncology
https://pharmaceuticalintelligence.com/2015/10/19/glioma-glioblastoma-and-neurooncology/
Larry H. Bernstein, MD, FCAP
2.4 Progresión del cáncer hematológico
2.4 Hematological Cancer Progression
2.4.1 Neoplasias hematológicas malignas
2.4.1 Hematologic Malignancies
Larry H. Bernstein, MD, FCAP
2.4.2 Clasificación de los cánceres hematológicos
2.4.2 Hematological Cancer Classification
https://pharmaceuticalintelligence.com/2015/08/11/hematological-cancer-classification-2-4/
Larry H. Bernstein, MD, FCAP
2.4.3 Diagnóstico de las neoplasias hematológicas malignas
2.4.3 Hematological Malignancy Diagnostics
https://pharmaceuticalintelligence.com/2015/08/11/hematological-malignancy-diagnostics-4-2-3/
Larry H. Bernstein, MD, FCAP
2.4.4 Tratamiento de las leucemias agudas
2.4.4 Treatment of Acute Leukemias
https://pharmaceuticalintelligence.com/2015/10/05/treatment-of-acute-leukemias/
Larry H. Bernstein, MD, FCAP
2.4.5 Tratamiento de las leucemias crónicas
2.4.5 Treatment for Chronic Leukemias
https://pharmaceuticalintelligence.com/2015/08/11/treatment-for-chronic-leukemias-2-4-4b/
Larry H. Bernstein, MD, FCAP
2.4.6 Tratamiento de los linfomas
2.4.6 Treatment of Lymphomas
https://pharmaceuticalintelligence.com/2015/08/11/treatment-of-lymphomas-2-4-4c/
Larry H. Bernstein, MD, FCAP
2.4.7 Tratamientos para linfomas y leucemias
2.4.7 Treatments for Lymphomas and Leukemias
https://pharmaceuticalintelligence.com/2015/08/11/treatments-for-leukemias-and-lymphomas-4-2-5/
Larry H. Bernstein, MD, FCAP
2.4.8 Actualización sobre la leucemia mieloide crónica
2.4.8 Update on Chronic Myeloid Leukemia
https://pharmaceuticalintelligence.com/2015/10/14/update-on-chronic-myeloid-leukemia/
Larry H. Bernstein, MD, FCAP
2.4.9 El cáncer de páncreas en la encrucijada del metabolismo
2.4.9 Pancreatic Cancer at the Crossroads of Metabolism
https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/
Demet Sag, Ph.D., CRA, GCP
2.4.10 Mejor medicación contra el cáncer
2.4.10 Better Cancer Medication
https://pharmaceuticalintelligence.com/2015/10/09/better-cancer-medication/
Larry H. Bernstein, MD, FCAP
Resumen
Summary
Capítulo 3: Medicina personalizada contra el cáncer
Chapter 3: Personalized Medicine in Cancer
Introducción
Introduction
3.0 Medicina personalizada contra el cáncer: El testimonio de Larry H. Bernstein, MD, FCAP
3.0 Personalized Medicine in Cancer: The Voice of Larry H. Bernstein, MD, FCAP
https://pharmaceuticalintelligence.com/2015/05/12/personalized-medicine-in-cancer-3/
Larry H. Bernstein, MD, FCAP
3.1 El camino hacia la medicina personalizada
3.1 The path to personalized medicine
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
3.2 El papel de la nanobiotecnología en el desarrollo de la medicina personalizada contra el cáncer
3.2 Role of Nanobiotechnology in Developing Personalized Medicine for Cancer
Larry H. Bernstein, MD, FCAP
3.3 El receptor HER-2 y el cáncer de mama: diez años de terapia dirigida contra HER-2 y medicina personalizada
3.3 The HER-2 Receptor and Breast Cancer: Ten Years of Targeted Anti–HER-2 Therapy and Personalized Medicine
Larry H. Bernstein, MD, FCAP
3.4 La medicina personalizada aún no ha llegado
3.4 Personalized Medicine is not yet here
https://pharmaceuticalintelligence.com/2015/10/08/personalized-medicine-is-not-yet-here-3-4/
Larry H. Bernstein, MD, FCAP
3.5 Biomarcadores para la oncología personalizada: avances recientes y futuros retos.
3.5 Biomarkers for personalized oncology: recent advances and future challenges.
Larry H. Bernstein, MD, FCAP
3.5.1 Firma de hipermetilación de ZNF154
3.5.1 ZNF154 hypermethylation signature
https://pharmaceuticalintelligence.com/2016/02/05/znf154-hypermethylation-signature/
Larry H. Bernstein, MD, FCAP
3.6 Oncología personalizada: avances recientes y futuros retos.
3.6 Personalized oncology: recent advances and future challenges.
Larry H. Bernstein, MD, FCAP
3.7 Biomarcadores farmacogenómicos para el tratamiento personalizado del cáncer.
3.7 Pharmacogenomic biomarkers for personalized cancer treatment.
Larry H. Bernstein, MD, FCAP
3.8 Límites de la predicción en la medicina personalizada: una visión general
3.8 Limits to forecasting in personalized medicine: An overview
Larry H. Bernstein, MD, FCAP
3.9 La caja de herramientas para la edición del genoma: un espectro de estrategias para la modificación dirigida
3.9 The genome editing toolbox: a spectrum of approaches for targeted modification
Larry H. Bernstein, MD, FCAP
3.10 El camino hacia la medicina personalizada
3.10 The Path to Personalized Medicine
https://pharmaceuticalintelligence.com/2015/10/09/the-path-to-personalized-medicine/
Larry H. Bernstein, MD, FCAP
3.11 Medicina personalizada y cáncer de colon
3.11 Personalized Medicine and Colon Cancer
https://pharmaceuticalintelligence.com/2013/05/25/personalized-medicine-and-colon-cancer/
Tilda Barliya, PhD
3.12 Medicina personalizada: la iniciativa de California
3.12 Personalized Medicine – The California Initiative
https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/
Demet Sag, PhD, CRA, GCP
Resumen
Summary
Segunda parte:
Oncología intervencionista
Part Two:
Interventional Oncology
Capítulo 4: Cirugía
Chapter 4: Surgery
Introducción
Introduction
4.1 Papel del sistema nervioso central en las metástasis del cáncer: estudio de los NIH
4.1 Role of the Nervous System in Cancer Metastasis – NIH Study
https://pubmed.ncbi.nlm.nih.gov/23599747/ DOI: 10.3892/ol.2013.1168
Sha Li 1, Yanlai Sun, Dongwei Gao
4.1.1 El dolor en las metástasis
4.1.1 Pain in Metastasis
Demet Sag, PhD, CRA, GCP
4.2 Tecnología de imagen en la cirugía del cáncer
4.2 Imaging Technology in Cancer Surgery
https://pharmaceuticalintelligence.com/2015/08/05/imaging-technology-in-cancer-surgery/
Dror Nir, PhD
4.3 Enfermedades metastásicas: ejemplos de procedimientos quirúrgicos en el tratamiento del cáncer
4.3 Metastatic Diseases – Examples of Surgical Procedures in Treatment of Cancer
4.3.1 Técnicas de ablación en la oncología intervencionista
4.3.1 Ablation Techniques in Interventional Oncology
https://pharmaceuticalintelligence.com/2015/08/05/ablation-techniques-in-interventional-oncology/
Dror Nir, PhD
4.3.2 Cánceres no hematológicos
4.3.2 Non-hematological Cancers
https://pharmaceuticalintelligence.com/2015/05/01/nonhematological-cancers-4-2/
Larry H. Bernstein, MD, FCAP
4.3.3 Ejemplos de procedimientos quirúrgicos
4.3.3 Examples of Surgical Procedures
https://pharmaceuticalintelligence.com/2015/05/02/examples-of-surgical-procedures-4-4/
Larry H. Bernstein, MD, FCAP
4.4 Procedimientos de vanguardia en la oncología intervencionista: ablación por radiofrecuencia, quimioembolización transarterial, ablación por microondas y electroporación irreversible (IRE)
4.4 State-of-the-Art Procedures in Interventional Oncology: Radiofrequency Ablation, Transarterial Chemoembolization, Microwave Ablation and Irreversible Electroporation (IRE)
Larry H. Bernstein, MD, FCAP
4.4.1 Terapia fotodinámica a nanoescala
4.4.1 Nanoscale photodynamic therapy
https://pharmaceuticalintelligence.com/2016/02/05/nanoscale-photodynamic-therapy/
Larry H. Bernstein, MD, FCAP
4.4.2 Alcalinización para bloquear la metástasis tumoral
4.4.2 Alkalinizing to block tumor metastasis
https://pharmaceuticalintelligence.com/2016/02/05/alkalinizing-to-block-tumor-metastasis/
Larry H. Bernstein, MD, FCAP
4.5 Cuidados paliativos
4.5 Palliative care
https://pharmaceuticalintelligence.com/2015/05/14/palliative-care_4-6/
Larry H. Bernstein, MD, FCAP
Resumen
Summary
Capítulo 5: Radioterapia
Chapter 5: Radiation Therapy
Introducción
Introduction
5.1 Radioterapia de haz externo (EBRT) y braquiterapia
5.1 External beam radiotherapy (EBRT) & Brachytherapy
https://pharmaceuticalintelligence.com/2015/10/10/external-beam-radiation-therapy-and-brachytherapy/
Larry H. Bernstein, MD, FCAP
5.2 Tomografía fotoacústica
5.2 Photoacoustic Tomography
https://pharmaceuticalintelligence.com/2013/07/27/photoacoustic-tomography/
Tilda Barliya PhD
Capítulo 6: Quimioterapia
Chapter 6: Chemotherapy
Introducción del Dr. Stephen J. Williams, PhD
Introduction by Dr. Stephen J. Williams, PhD
6.1 Fármacos citotóxicos
6.1 Cytotoxic Drugs
6.1.1 ¿Por qué la quimioterapia citotóxica sigue siendo un pilar fundamental de muchos regímenes de quimioterapia?
6.1.1 Why Does Cytotoxic Chemotherapy Still Remain a Mainstay in Many Chemotherapy Regimens
Stephen J. Williams, PhD
6.1.1.2 Nueva generación de compuestos platinados para eludir la resistencia
6.1.1.2 New Generation of Platinated Compounds to Circumvent Resistance
Stephen J. Williams, PhD
6.1.1.3 Nuevos inhibidores de la topoisomerasa: agentes de origen natural
6.1.1.3 New Topoisomerase Inhibitors: Agents From Nature
https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/
Stephen J. Williams, PhD
6.1.1.4 ¿Son los inhibidores de la ciclina D una buena diana?
6.1.1.4 Are Cyclin D Inhibitors a Good Target?
Stephen J. Williams, PhD
6.1.2 Timosina alfa1 y melanoma
6.1.2 Thymosin alpha1 and melanoma
https://pharmaceuticalintelligence.com/2013/02/15/thymosin-alpha1-in-melanoma/
Tilda Barliya, PhD
6.1.3 Paclitaxel: farmacocinética (FC), farmacodinámica (FD) y farmacogenómica (FG)
6.1.3 Paclitaxel: Pharmacokinetic (PK), Pharmacodynamic (PD) and Pharmacogenomics (PG)
https://pharmaceuticalintelligence.com/2012/11/27/paclitaxel/
Tilda Barliya, PhD
6.1.4 Comparación entre paclitaxel y Abraxane (paclitaxel ligado a albúmina)
6.1.4 Paclitaxel vs Abraxane (albumin-bound paclitaxel)
https://pharmaceuticalintelligence.com/2012/11/17/paclitaxel-vs-abraxane-albumin-bound-paclitaxel/
Tilda Barliya, PhD
6.1.5 Según un experto sobre el cáncer, la batalla debe reorientarse para adelantarse a la enfermedad
6.1.5 War on Cancer Needs to Refocus to Stay Ahead of Disease Says Cancer Expert
Stephen J. Williams, PhD
6.1.6 Resistencia a los tratamientos citotóxicos: revisión actual
6.1.6 Drug Resistance to Cytotoxic Therapies – Current Review
6.1.6.1 ¿Se puede considerar que la heterogeneidad intratumoral es un mecanismo de resistencia?
6.1.6.1 Can IntraTumoral Heterogeneity Be Thought of as a Mechanism of Resistance?
Stephen J. Williams, PhD
6.1.6.2 Las células madre del cáncer como mecanismo de resistencia
6.1.6.2 Cancer Stem Cells As A Resistance Mechanisms
https://pharmaceuticalintelligence.com/2015/10/14/cancer-stem-cells-as-a-mechanism-of-resistance/
Stephen J. Williams, PhD
6.1.7 Nuevos inhibidores de la topoisomerasa en ensayos clínicos
6.1.7 New Topoisomerase Inhibitors in Clinical Trials
https://pharmaceuticalintelligence.com/2015/10/14/new-topoisomerase-inhibitors-in-clinical-trials/
Stephen J. Williams, PhD
6.2 Neoplasias hematológicas malignas
6.2 Hematological Malignancies
https://pharmaceuticalintelligence.com/2015/05/11/hematologic-malignancies-6-2/
Larry H. Bernstein, MD, FCAP
6.3 Tratamientos paliativos
6.3 Supportive Therapies
6.3.1 Bifosfonatos y metástasis óseas
6.3.1 Bisphosphonates and Bone Metastasis
https://pharmaceuticalintelligence.com/2015/09/14/bisphosphonatesandbonemetabolism/
Stephen J. Williams, PhD
6.3.2 Transfusiones de sangre
6.3.2 Blood transfusions
https://pharmaceuticalintelligence.com/2015/10/10/blood-transfusions/
Larry H. Bernstein, MD, FCAP
6.3.3 Eritropoyetina
6.3.3 Erythropoietin
https://pharmaceuticalintelligence.com/2015/10/10/erythropoietin/
Larry H. Bernstein, MD, FCAP
6.3.4 G-CSF (factor estimulante de colonias de granulocitos)
6.3.4 G-CSF (granulocyte-colony stimulating factor)
https://pharmaceuticalintelligence.com/2015/10/10/granulocyte-colony-stimulating-factor-g-csf/
Larry H. Bernstein, MD, FCAP
6.3.5 Intercambio de plasma (plasmaféresis)
6.3.5 Plasma exchange (plasmapheresis)
https://pharmaceuticalintelligence.com/2015/10/10/plasmapheresis/
Larry H. Bernstein, MD, FCAP
6.3.6 Transfusiones de plaquetas
6.3.6 Platelet transfusions
https://pharmaceuticalintelligence.com/2015/10/10/platelet-transfusions/
Larry H. Bernstein, MD, FCAP
6.3.7 Esteroides, inflamación y tratamiento con CAR-T
6.3.7 Steroids, Inflammation and CAR-T Therapy
https://pharmaceuticalintelligence.com/2015/09/14/steroids-inflammation-and-car-t-therapy/
Stephen J. Williams, PhD
6.3.8 Opioides, dolor y cuidados paliativos
6.3.8 Opioids, pain and Palliative Care
https://pharmaceuticalintelligence.com/2015/09/14/opioids-pain-and-palliative-care/
Stephen J. Williams, PhD
Resumen
Summary
Tercera parte:
inmunoterapia, opciones de fármacos biológicos y terapias dirigidas al sistema inmunitario del paciente oncológico
Part Three:
Immunotherapy, Biologics Drugs Options & Targeted Therapies for the Immune System of the Cancer Patient
Introducción por el Dr. Larry H Bernstein, MD, FCAP
Introduction by Dr. Larry H Bernstein, MD, FCAP
Capítulo 7: Inmunoterapia basada en virus y vacunas
Chapter 7: Viral and Vaccine Based Immunotherapy
Introducción
Introduction
7.1 Bacilo de Calmette-Guérin (BCG) para el cáncer superficial de vejiga
7.1 Bacillus Calmette–Guérin (BCG) for superficial bladder cancer
Dr. Larry H Bernstein, MD, FCAP
7.2 Resultados del bacilo de Calmette-Guérin (BCG) para el cáncer de vejiga superficial
7.2 Findings on Bacillus Calmette–Guérin (BCG) for Superficial Bladder Cancer
Demet Sag, PhD, CRA, GCP
7.3 Virus del papiloma para el cáncer cervicouterino
7.3 Papilloma viruses for cervical cancer
https://pharmaceuticalintelligence.com/2015/10/10/papilloma-viruses-for-cervical-cancer/
Dr. Larry H Bernstein, MD, FCAP
7.4 Observaciones sobre el virus del papiloma humano y el cáncer
7.4 Observations on Human Papilloma Virus and Cancer
https://pharmaceuticalintelligence.com/2015/10/13/huamn-papilloma-virus-and-cancer/
Demet Sag, PhD, CRA, GCP
7.5 Inhibidor de la proteína NS5A del VHC de Theravance, Inc. para tratar la infección por el virus de la hepatitis C
7.5 HCV NS5A Inhibitor from Theravance, Inc. to treat hepatitis C virus infection
Dr. Larry H Bernstein, MD, FCAP
7.6 La ERGE y el adenocarcinoma de esófago
7.6 GERD and Esophageal Adenocarcinoma
https://pharmaceuticalintelligence.com/2015/10/10/gerd-and-esophageal-adenocarcinoma/
Dr. Larry H Bernstein, MD, FCAP
7.7 Helicobacter pylori
7.7 Helicobacter Pylorum
https://pharmaceuticalintelligence.com/2015/10/11/helicobacter-pylorum/
Dr. Larry H Bernstein, MD, FCAP
7.8 Virus y cáncer: un paseo por la memoria
7.8 Viruses and Cancer: A Walk on the Memory Lane
https://pharmaceuticalintelligence.com/2015/10/12/viruses-and-cancer/
Demet Sag, PhD, CRA, GCP
7.9 En el nombre de la traducción: ¿Rebuscado? ¿Amigo o enemigo? De bacteria patógena alimentaria a convertirse en vacuna amiga
7.9 In the name of Translation: Is it a far fetch? Friend or Foe? From a Food Born Pathogen Bacteria to become a friendly Vaccine
Demet Sag, PhD, CRA, GCP
Capítulo 8: Trasplante alogénico de células madre hematopoyéticas e injerto contra hospedador
Chapter 8: Allogeneic Hematopoietic Stem Cell Transplantation and Graft versus Host
8.1 Hematopoyesis
8.1 Hematopoiesis
https://pharmaceuticalintelligence.com/2016/01/23/hematopoiesis/
Dr. Larry H Bernstein, MD, FCAP
8.2 Trasplante alogénico de células madre
8.2 Allogeneic Stem Cell Transplantation
https://pharmaceuticalintelligence.com/2015/05/14/allogeneic-stem-cell-transplantation-9-2/
Dr. Larry H Bernstein, MD, FCAP
8.3 Seguimiento de la LMA con un análisis de sangre de «células específicas»
8.3 Monitoring AML with “cell specific” blood test
https://pharmaceuticalintelligence.com/2016/01/23/monitoring-aml-with-cell-specific-blood-test/
Dr. Larry H Bernstein, MD, FCAP
8.4 La estrategia de Juno erradicó las células cancerosas en 10 de 12 pacientes con leucemia, lo que indica potencial para transformar el tratamiento de referencia en oncología
8.4 Juno’s approach eradicated cancer cells in 10 of 12 leukemia patients, indicating potential to transform the standard of care in oncology
Aviva Lev-Ari, PhD, RN
Capítulo 9: Últimos avances en la inmunoterapia del cáncer
Chapter 9: Latest Development in Immunotherapy in Cancer
9.1 Inhibidores del punto de control
9.1 Checkpoint Inhibitors
9.1.2 Artículos sobre «PD-L1»
9.1.2 Articles on ‘PD-L1’
9.1.2.1 Merck y Pfizer anuncian una alianza estratégica global sobre anticuerpos anti-PD-L1 para acelerar su presencia en la inmunooncología
9.1.2.1 Merck and Pfizer Announces Global Strategic Alliance on Anti-PD-L1 to Accelerate Presence in Immuno-Oncology
Aviva Lev-Ari, PhD, RN
9.1.2.2 Politerapia inmunooncológica: implicaciones para las grandes farmacéuticas
9.1.2.2 Immuno-Oncology Combination Therapy: Implications For Major Pharma
Aviva Lev-Ari, PhD, RN
9.1.2.3 El inhibidor de PD1 atezolizumab puede ser prometedor frente al cáncer de vejiga en pacientes con alta expresión de PDL1
9.1.2.3 PD1 Inhibitor atezolizumab may show promise in bladder cancer in patients with high PDL1 expression
Stephen J. Williams, PhD
9.1.2.4 Conferencia sobre Inmunoterapia del Cáncer y Simposio sobre Biomarcadores para la Inmunoterapia del Cáncer, 6-11 de marzo de 2016 | Moscone North Convention Center | San Francisco, CA, EUA
9.1.2.4 Cancer Immunotherapy Conference & Biomarkers for Cancer Immunotherapy Symposium, March 6-11, 2016 | Moscone North Convention Center | San Francisco, CA
Aviva Lev-Ari, PhD, RN
9.1.2.5 Nuevos biomarcadores para la inmunoterapia del cáncer
9.1.2.5 Novel biomarkers for targeting cancer immunotherapy
Dr. Larry H Bernstein, MD, FCAP
9.1.2.6 Nuevos hallazgos en el cáncer de endometrio: mutaciones, tipos moleculares y respuestas inmunitarias evocadas por los subtipos de cáncer de endometrio y ovario propensos a las mutaciones
9.1.2.6 New Findings in Endometrial Cancer: Mutations, Molecular Types and Immune Responses Evoked by Mutation-prone Endometrial, Ovarian Cancer Subtypes
Aviva Lev-Ari, PhD, RN
9.1.2.7 Cáncer de páncreas: genética, genómica e inmunoterapia
9.1.2.7 Pancreatic Cancer: Genetics, Genomics and Immunotherapy
https://pharmaceuticalintelligence.com/2013/04/11/update-on-pancreatic-cancer/
Tilda Barliya, PhD
9.2 Agentes coestimuladores
- CD137/41BB
- OX40
- CD27
- GITR
- CD40
9.2 Co-Stimulatory Agents
- CD137/41BB
- OX40
- CD27
- GITR
- CD40
9.3 Inmunomoduladores
- CTLA4
- KIR
- IDO IL-2
- IL-21
- CSF1R
- Vacunas
9.3 Immuno-modulators
- CTLA4
- KIR
- IDO IL-2
- IL-21
- CSF1R
- Vaccines
9.3.1 Artículos sobre CTLA4, proteína 4 asociada a los linfocitos T citotóxicos
9.3.1 Articles on CTLA4 – cytotoxic T Lymphocyte Associated protein-4
9.3.1.1 Inmunoterapia contra el cáncer
9.3.1.1 Cancer Immunotherapy
https://pharmaceuticalintelligence.com/2015/10/27/cancer-immunotherapy/
Dr. Larry H Bernstein, MD, FCAP
9.3.1.2 La inmunoterapia combinada anti-CTLA4 y anti-PD1 muestra resultados prometedores contra el melanoma avanzado
9.3.1.2 Combined anti-CTLA4 and anti-PD1 immunotherapy shows promising results against advanced melanoma
Aviva Lev-Ari, PhD, RN
9.4 Antineoplásicos: cuatro clases de moléculas inmunooncológicas en desarrollo, incluidos los CAR-T
- Fase de desarrollo,
- Nombre del medicamento
- Nombre de la farmacéutica
- Indicación de la enfermedad objetivo
9.4 Anti-Cancer – Four Drug Classes of Immune-Oncology Molecules in Development, including CAR-T
- Phase of Development,
- Drug Name
- Pharma Name
- Target Disease Indication
http://jpmorgan.metameetings.com/confbook/healthcare16/stash/misc/IO%20Combos.pdf
Stephen J. Williams, PhD
9.5 Señalización de CAR-T (linfocitos T con receptores de antígenos quiméricos) de quinta generación
9.5 Fifth generation CAR-T (Chimeric Antigen Receptor T- cell) Signaling
9.5.1 Artículos sobre «CAR-T»
9.5.1 Articles on ‘CAR-T’
9.5.1.1 Los líderes en el campo de los CAR-T avanzan con esperanza y cautela
9.5.1.1 Leaders in the CAR-T Field Are Proceeding With Cautious Hope
Stephen J. Williams, PhD
9.5.1.2 Tratamiento de la leucemia con CAR-T
9.5.1.2 CAR-T therapy in leukemia
https://pharmaceuticalintelligence.com/2015/11/05/car-t-therapy-in-leukemia/
Dr. Larry H Bernstein, MD, FCAP
9.5.1.3 Una rosa, pero con espinas. Expertos en oncología debaten sobre los retos del tratamiento con linfocitos CAR-T.
9.5.1.3 Rosa’s to like – Commentary on “Cancer Experts Discuss Hurdles Facing CAR-T Therapy”
https://pharmaceuticalintelligence.com/2015/09/19/rosas-to-like/
Dr. Larry H Bernstein, MD, FCAP
Capítulo 10: Aptámeros e inhibidores peptídicos pequeños
Chapter 10: Aptamers and Small Peptide Inhibitors
10.1 Vacunas, péptidos pequeños, aptámeros e inmunoterapia [9]
10.1 Vaccines, Small Peptides, aptamers and Immunotherapy [9]
Dr. Larry H Bernstein, MD, FCAP
10.2 Inhibidores de la angiogénesis
10.2 Angiogenesis Inhibitors
https://pharmaceuticalintelligence.com/2015/05/15/angiogenesis_inhibitors/
Dr. Larry H Bernstein, MD, FCAP
10.3 Inhibidor de MDM2 para el tratamiento de los cánceres
10.3 MDM2 inhibitor for the treatment of cancers
https://pharmaceuticalintelligence.com/2016/01/23/mdm2-inhibitor-for-the-treatment-of-cancers/
Dr. Larry H Bernstein, MD, FCAP
10.4 El desarrollo de las tratamientos basados en ARNip para el cáncer
10.4 The Development of siRNA-Based Therapies for Cancer
Ziv Raviv, PhD
Capítulo 11: Otras novedades
Chapter 11: Additional Developments
11.1 Pfizer apuesta mil millones de dólares en los agentes biológicos condicionalmente activos de BioAtla | BioAcceleration™ para agentes terapéuticos proteicos
11.1 Pfizer bets $1 billion on BioAtla Conditionally Active Biologics | BioAcceleration™ for Protein Therapeutics
Aviva Lev-Ari, PhD, RN
11.2 Expresión génica y mecanismos de resistencia inmunitaria adaptativa en el linfoma
11.2 Gene expression and adaptive immune resistance mechanisms in lymphoma
Dr. Larry H Bernstein, MD, FCAP
11.3 La delicada conexión entre la IDO (indolamina 2,3-deshidrogenasa) y la inmunooncología
11.3 The Delicate Connection: IDO (Indolamine 2, 3 dehydrogenase) and Cancer Immunology
Demet Sag, PhD, CRA, GCP
11.4 Nueva estrategia oncológica mediante el atrapamiento de fármacos
11.4 Novel Oncologic Approach by Drug Trapping
https://pharmaceuticalintelligence.com/2016/02/01/novel-oncologic-approach-by-drug-trapping/
Dr. Larry H Bernstein, MD, FCAP
11.5 Biomarcadores del cáncer
11.5 Biomarkers of Cancer
https://pharmaceuticalintelligence.com/2016/02/02/biomarkers-of-cancer/
Dr. Larry H Bernstein, MD, FCAP
11.6 Actividad enzimática causante del cáncer
11.6 Cancer Causing Enzyme Activity
https://pharmaceuticalintelligence.com/2016/02/02/cancer-causing-enzyme-activity/
Dr. Larry H Bernstein, MD, FCAP
11.7 ADN basura y cáncer de mama
11.7 Junk DNA and Breast Cancer
https://pharmaceuticalintelligence.com/2016/02/02/junk-dna-and-breast-cancer/
Dr. Larry H Bernstein, MD, FCAP
11.8 Aptámeros y armazones
11.8 Aptamers and Scaffolds
https://pharmaceuticalintelligence.com/2016/02/06/aptamers-and-scaffolds/
Dr. Larry H Bernstein, MD, FCAP
Cuarta parte:
Tratamientos hormonales
Part Four:
Hormonal Therapies
Capítulo 12: Tratamiento hormonal selectivo
Chapter 12: Selective Hormone Therapy
12.1 Tratamiento hormonal
12.1 Hormone Therapy
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.2 Papel de la progesterona en la progresión del cáncer de mama
12.2 Role of progesterone in breast cancer progression
https://pharmaceuticalintelligence.com/2013/06/25/role-of-progesterone-in-breast-cancer-progression/
Tilda Barliya, PhD
12.3 Hormonas y diferentes tipos de cáncer de ovario
12.3 Hormone and Different Ovarian Cancers
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.4 La quimioterapia comparada con el tratamiento hormonal en el cáncer de ovario resistente a platino y a paclitaxel: ensayo aleatorizado del grupo alemán del estudio Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) sobre el cáncer de ovario
12.4 Chemotherapy versus hormonal treatment in platinum- and paclitaxel-refractory ovarian cancer: a randomised trial of the German Arbeitsgemeinschaft Gynaekologische Onkologie (AGO) Study Group Ovarian Cancer
https://pharmaceuticalintelligence.com/2015/05/15/hormone-therapy-9-4/
Dr. Larry H Bernstein, MD, FCAP
12.5 ¿Regresan los antagonistas de CXCR4 a la quimioterapia contra el cáncer?
12.5 Are CXCR4 Antagonists Making a Comeback in Cancer Chemotherapy?
Stephen J. Williams, PhD
Quinta parte:
tratamientos alternativos
Part Five:
Alternative Therapies
Capítulo 13: Tratamientos complementarios y alternativos
Chapter 13: Complementary and Alternative Therapies
13.1 Tratamientos complementarios y alternativos
13.1 Complementary and Alternative Therapies
Dr. Larry H Bernstein, MD, FCAP
Sexta parte:
Nanotecnología, nanopartículas y administración de fármacos
Por Tilda Barliya, PhD
Part Six:
NanoTechnology, Nanoparticles and Drug Delivery
By Tilda Barliya, PhD
Capítulo 14: Nanopartículas y administración de fármacos
Chapter 14: Nanoparticles and Drug Delivery
14.1 Introducción a la nanotecnología en la administración de fármacos
14.1 Introduction to nanotechnology in Drug Delivery
https://pharmaceuticalintelligence.com/2012/09/28/introduction-to-nanotechnology-in-drug-delivery/
Tilda Barliya, PhD
14.1.1 Construcción de un sistema de administración de fármacos (DDS): elección de polímeros y principios activos
14.1.1 Building a Drug-Delivery System (DDS): choice of polymers and drugs
Tilda Barliya, PhD
14.1.2 Factores que afectan a la FC del nanotransportador
14.1.2 Factors affecting the PK of the nanocarrier
https://pharmaceuticalintelligence.com/2012/10/09/factors-affecting-the-pk-of-the-nanocarrier/
Tilda Barliya, PhD
14.2 Detección y diagnóstico por imagen
14.2 Detection and Imaging
14.2.1 Detección de una sola molécula por Philip Tinnefeld
14.2.1 Single-Molecule Detection by Philip Tinnefeld
https://pharmaceuticalintelligence.com/2013/09/24/single-molecule-detection-by-philip-tinnefeld/
Tilda Barliya, PhD
14.2.2 Mesotelina: un biomarcador de detección temprana del cáncer (por Jack Andraka)
14.2.2 Mesothelin: An early detection biomarker for cancer (By Jack Andraka)
Tilda Barliya, PhD
14.2.3 Nanotecnología y resonancia magnética
14.2.3 Nanotechnology and MRI imaging
https://pharmaceuticalintelligence.com/2012/10/17/nanotechnology-and-mri-imaging/
Tilda Barliya, PhD
14.2.4 Nanotecnología: detección y tratamiento del cáncer metastásico en los ganglios linfáticos
14.2.4 Nanotechnology: Detecting and Treating metastatic cancer in the lymph node
Tilda Barliya, PhD
14.2.5 Diagnóstico del cáncer de pulmón en el aliento exhalado mediante nanopartículas de oro
14.2.5 Diagnosing lung cancer in exhaled breath using gold nanoparticles
Tilda Barliya, PhD
14.2.6 Nanoespectroscopia avanzada
14.2.6 Advanced Nanospectroscopy
https://pharmaceuticalintelligence.com/2016/02/06/advanced-nanospectroscopy/
Dr. Larry H Bernstein, MD, FCAP
14.3 Tratamiento del cáncer
14.3 Cancer Therapy
14.3.1 Tratamiento nanotecnológico del cáncer de mama
14.3.1 Nanotech Therapy for Breast Cancer
https://pharmaceuticalintelligence.com/2012/12/09/naotech-therapy-for-breast-cancer/
Tilda Barliya, PhD
14.3.2 Informe sobre el cáncer de ovario y la cirugía guiada por fluorescencia
14.3.2 Ovarian Cancer and fluorescence-guided surgery: A report
Tilda Barliya, PhD
14.3.3 Cáncer de pulmón (CPNM), administración de fármacos y nanotecnología
14.3.3 Lung Cancer (NSCLC), drug administration and nanotechnology
Tilda Barliya, PhD
14.3.4 Cáncer de próstata y nanotecnología
14.3.4 Prostate Cancer and Nanotecnology
https://pharmaceuticalintelligence.com/2013/02/07/prostate-cancer-and-nanotecnology/
Tilda Barliya, PhD
14.3.5 La nanotecnología aborda el cáncer cerebral
14.3.5 Nanotechnology Tackles Brain Cancer
https://pharmaceuticalintelligence.com/2012/11/23/nanotechnology-tackles-brain-cancer/
Tilda Barliya, PhD
14.3.6 Leucemia linfoblástica aguda (LLA) y nanotecnología
14.3.6 Acute Lymphoblastic Leukemia (ALL) and Nanotechnology
Tilda Barliya, PhD
14.4 El ADN/ARN como diana
14.4 Targeting DNA/RNA
14.4.1 Nanotecnología del ADN
14.4.1 DNA Nanotechnology
https://pharmaceuticalintelligence.com/2013/05/15/dna-nanotechnology/
Tilda Barliya, PhD
14.4.2 El desarrollo de los tratamientos basados en ARNip para el cáncer
14.4.2 The Development of siRNA-Based Therapies for Cancer
Ziv Raviv, PhD
14.4.3 Nanotecnología, medicina personalizada y secuenciación del ADN
14.4.3 Nanotechnology, personalized medicine and DNA sequencing
Tilda Barliya, PhD
14.5 Administración transdérmica de fármacos (DSS)
14.5 Transdermal Drug Delivery (DSS)
14.5.1 Introducción al sistema de administración transdérmica de fármacos (TDD) y a la nanotecnología
14.5.1 Introduction to Transdermal Drug Delivery (TDD) system and nanotechnology
Tilda Barliya, PhD
14.5.2 Sistema de administración transdérmica de fármacos (TDD) y nanotecnología: Parte II
14.5.2 Transdermal drug delivery (TDD) system and nanotechnology: Part II
Tilda Barliya, PhD
14.6 Tratamiento nanotecnológico de enfermedades no cancerosas
14.6 Nanotechnology therapy for non-cancerous diseases
https://pharmaceuticalintelligence.com/2015/10/10/nanotechnology-therapy-for-non-cancerous-diseases/
Dr. Larry H. Bernstein, MD, FCAP
14.6.1 Introducción a la nanotecnología y la enfermedad de Alzheimer
14.6.1 Introduction to Nanotechnology and Alzheimer disease
Tilda Barliya, PhD
14.6.2 Nanotecnología y cardiopatías
14.6.2 Nanotechnology and Heart Disease
https://pharmaceuticalintelligence.com/2013/03/04/nanotechnology-and-heart-disease/
Tilda Barliya, PhD
14.6.3 Introducción a la ingeniería de tejidos; aplicaciones de la nanotecnología
14.6.3 Introduction to Tissue Engineering; Nanotechnology applications
Tilda Barliya, PhD
14.6.4 Nanotecnología y administración ocular de fármacos: Parte I
14.6.4 Nanotechnology and Ocular Drug Delivery: Part I
https://pharmaceuticalintelligence.com/2013/02/23/nanotechnology-and-ocular-drug-delivery-part-i/
Tilda Barliya, PhD
14.6.5 Regeneración ósea y nanotecnología
14.6.5 Bone regeneration and nanotechnology
https://pharmaceuticalintelligence.com/2013/07/13/bone-regeneration-and-nanotechnology/
Tilda Barliya, PhD
14.6.6 Nanotecnología y tratamiento del VIH/SIDA
14.6.6 Nanotechnology and HIV/AIDS treatment
https://pharmaceuticalintelligence.com/2012/12/25/nanotechnology-and-hivaids-treatment/
Tilda Barliya, PhD
14.7 Peligros de la nanotecnología
14.7 Hazards of Nanotechnology
14.7.1 Inmunorreactividad de las nanopartículas
14.7.1 Immunoreactivity of Nanoparticles
https://pharmaceuticalintelligence.com/2012/10/27/immunoreactivity-of-nanoparticles/
Tilda Barliya, PhD
14.7.2 Nanotecnología y cuestiones de salud
14.7.2 Nanotechnology and Health issues
https://pharmaceuticalintelligence.com/2012/11/04/nanotechnology-and-health-issues/
Tilda Barliya, PhD
Séptima parte:
etapas de transición del cáncer
Part Seven:
Transitional Stages of Cancer
Capítulo 15: De la neoplasia maligna in situ al cáncer
Chapter 15: In-situ Malignancy to Cancer
Introducción
Introduction
15.1 Avances en la inmunopatogenia de la diabetes y los linfomas
15.1 Immunopathogenesis Advances in Diabetes and Lymphomas
Dr. Larry H. Bernstein, MD, FCAP
15.2 Una sola célula arroja luz sobre la transformación maligna celular
15.2 Single Cell Shines Light on Cell Malignant Transformation
Dr. Larry H. Bernstein, MD, FCAP
15.3 Nanosensores para el reconocimiento de proteínas y la interacción gen-proteoma
15.3 Nanosensors for Protein Recognition, and gene-proteome interaction
Dr. Larry H. Bernstein, MD, FCAP
15.4 Los científicos descubren cómo escapan las células cancerosas de los vasos sanguíneos
15.4 Scientists discover how cancer cells escape blood vessels
Danut Dragoi, PhD
15.5 Descifrando el epigenoma
15.5 Deciphering the Epigenome
https://pharmaceuticalintelligence.com/2016/01/28/deciphering-the-epigenome/
Dr. Larry H. Bernstein, MD, FCAP
15.6 La Universidad de Swansea utiliza inteligencia artificial para detectar el cáncer
15.6 Swansea Uni uses artificial intelligence to detect cancer
Evelina Cohn, PhD
15.7 Factores de crecimiento, supresores y receptores en la tumorigénesis
15.7 Growth Factors, Suppressors and Receptors in Tumorigenesis
Dr. Larry H. Bernstein, MD, FCAP
15.7.1 Puntos cuánticos
15.7.1 Quantum dots
https://pharmaceuticalintelligence.com/2015/04/13/quantum-dots-7-1/
Dr. Larry H. Bernstein, MD, FCAP
15.7.2 Fármaco encapsulado en liposomas
15.7.2 Liposomal encapsulated drug
https://pharmaceuticalintelligence.com/2015/04/13/liposomal-encapsulated-drug-7-2/
Dr. Larry H. Bernstein, MD, FCAP
15.7.3 Unión de proteínas, interacciones entre proteínas e implicaciones terapéuticas
15.7.3 Protein-binding, Protein-Protein interactions & Therapeutic Implications
Dr. Larry H. Bernstein, MD, FCAP
15.7.4 EpCAM
15.7.4 EpCAM
https://pharmaceuticalintelligence.com/2015/04/07/epcam-7-4/
Dr. Larry H. Bernstein, MD, FCAP
15.7.5 Regulación al alza de las vías supresoras tumorales
15.7.5 Upregulating Tumor Suppressor Pathways
https://pharmaceuticalintelligence.com/2015/04/08/upregulate-tumor-suppressor-pathways-7-5/
Dr. Larry H. Bernstein, MD, FCAP
15.7.6 Manipulando las vías de señalización
15.7.6 Manipulating Signaling Pathways
https://pharmaceuticalintelligence.com/2015/04/08/manipulate-signaling-pathways-7-6/
Dr. Larry H. Bernstein, MD, FCAP
15.7.7 Actuando sobre vías específicas en los tratamientos antineoplásicos
15.7.7 Pathway Specific Targeting in Anticancer Therapies
Dr. Larry H. Bernstein, MD, FCAP
15.7.8 Sirtuinas
15.7.8 Sirtuins
https://pharmaceuticalintelligence.com/2015/04/10/sirtuins-7-8/
Dr. Larry H. Bernstein, MD, FCAP
15.7.9 Factor 1 Inducible por hipoxia (HIF-1)
15.7.9 Hypoxia Inducible Factor 1 (HIF-1)
https://pharmaceuticalintelligence.com/2015/04/10/hypoxia-inducible-factor-1-hif-17-9/
Dr. Larry H. Bernstein, MD, FCAP
15.7.10 Señalización de Wnt/β-catenina
15.7.10 Wnt/β-catenin Signaling
https://pharmaceuticalintelligence.com/2015/04/10/wnt%CE%B2-catenin-signaling-7-10/
Dr. Larry H. Bernstein, MD, FCAP
15.7.11 Actuando sobre la vía de Wnt
15.7.11 Targeting the Wnt Pathway
https://pharmaceuticalintelligence.com/2015/04/10/targeting-the-wnt-pathway-7-11/
Dr. Larry H. Bernstein, MD, FCAP
Resumen
Summary
Capítulo 16: Reflexiones sobre el futuro del tratamiento con anticuerpos monoclonales
Chapter 16: Reflections on the Promise of Monoclonal Antibody Therapy
Introducción
Introduction
16.1 Medicina personalizada: la iniciativa de California
16.1 Personalized Medicine – The California Initiative
https://pharmaceuticalintelligence.com/2015/10/12/personalized-medicine/
Demet Sag, PhD, CRA, GCP
16.2 Tratamiento con anticuerpos monoclonales: ¿lo que dice el nombre o una descripción clara?
16.2 Monoclonal Antibody Therapy: What is in the name or clear description?
Demet Sag, PhD, CRA, GCP
16.3 Tratamiento con anticuerpos monoclonales y su mercado
16.3 Monoclonal Antibody Therapy and Market
https://pharmaceuticalintelligence.com/2015/10/14/32589/
Demet Sag, PhD, CRA, GCP
16.4 Trastuzumab (Herceptin) para el cáncer de mama
16.4 Trastuzumab (Herceptin) for breast cancer
https://pharmaceuticalintelligence.com/2015/10/11/trastuzumab-for-breast-cancer/
Dr. Larry H. Bernstein, MD, FCAP
16.5 Rituximab para diversas neoplasias de linfocitos B
16.5 Rituximab for a variety of B-cell malignancies
https://pharmaceuticalintelligence.com/2015/10/11/rituximab-for-a-variety-of-b-cell-malignancies/
Dr. Larry H. Bernstein, MD, FCAP
16.6 Melanoma metastásico: la politerapia inmunoterapéutica de ipilimumab y nivolumab reduce el tamaño tumoral en el 58 % de los pacientes con cáncer de piel
16.6 Metastatic Melanoma: Immunotherapy Drug Combination, Ipilimumab plus Nivolumab – Shrinks Tumor Size In 58% Skin Cancer Patients
Aviva Lev-Ari, PhD, RN
16.7 Tratamiento con anticuerpos monoclonales del mieloma múltiple: elotuzumab
16.7 Monoclonal antibody treatment of Multiple Myeloma: Elotuzumab
https://pharmaceuticalintelligence.com/2016/01/23/monoclonal-antibody-treatment-of-multiple-myeloma/
Dr. Larry H. Bernstein, MD, FCAP
16.8 Fresolimumab
16.8 Fresolimumab
https://pharmaceuticalintelligence.com/2016/01/31/fresolimumab/
Stephen J. Williams, PhD
Resumen
Summary
Octava parte:
Investigación y orientaciones futuras para el tratamiento y la prevención del cáncer
Part Eight:
Research & Future Directions for
Cancer Therapy and Prevention
Capítulo 17: El futuro de la oncología
Chapter 17: The Future of Oncology
Introducción
Introduction
17.1 Nuevas estrategias para el tratamiento del cáncer
17.1 Novel Approaches to Cancer Therapy
https://pharmaceuticalintelligence.com/2015/04/11/novel-approaches-to-cancer-therapy-7-12/
Dr. Larry H. Bernstein, MD, FCAP
17.2 Medicina personalizada: nuevos diagnósticos e innovación en la farmacocinética
17.2 Personalized Medicine: New Diagnostics and Innovation in Pharmacokinetics
17.2.1 Nuevos biomarcadores para la inmunoterapia del cáncer
17.2.1 Novel biomarkers for targeting cancer immunotherapy
Dr. Larry H. Bernstein, MD, FCAP
17.2.2 Nanotecnología: aptámeros para sistemas de administración específicos y mejores de medicamentos existentes
17.2.2 Nanotechnology: aptamers for specific & better delivery systems of existing drugs
Dr. Larry H. Bernstein, MD, FCAP
17.2.3 Células madre de cánceres no hematológicos
17.2.3 Non-hematologic Cancer Stem Cells
https://pharmaceuticalintelligence.com/2015/05/22/nonhematologic-cancer-stem-cells-11-2-3/
Dr. Larry H. Bernstein, MD, FCAP
17.3 Prevención del cáncer
17.3 Cancer Prevention
17.3.1 Diagnóstico precoz
17.3.1 Early Diagnosis
https://pharmaceuticalintelligence.com/2015/10/15/early-diagnosis-early-detection-research-networks/
Stephen J. Williams, PhD
17.3.2 Nuevos métodos de diagnóstico
17.3.2 Novel Diagnostics Methods
17.3.2.1 Combinación de tecnología de nanotubos y anticuerpos creados por ingeniería genética para detectar biomarcadores del cáncer de próstata
17.3.2.1 Combining Nanotube Technology and Genetically Engineered Antibodies to Detect Prostate Cancer Biomarkers
Stephen J. Williams, PhD
17.3.2.2 Nuevo plan para analizar de forma rutinaria a los pacientes con el fin de detectar genes cancerígenos heredados
17.3.2.2 New scheme to routinely test patients for inherited cancer genes
Stephen J. Williams, PhD
17.3.2.3 Biomarcadores del cáncer
17.3.2.3 Cancer Biomarkers
https://pharmaceuticalintelligence.com/2015/05/06/cancer-biomarkers-11-3-2-3/
Larry H. Bernstein, MD, FCAP
17.3.2.4 BRCA 1 y 2 y detección precoz del cáncer
17.3.2.4 BRCA 1 and 2 and Early Detection of Cancer
https://pharmaceuticalintelligence.com/2015/10/11/brca-1-and-2-and-early-detection-of-cancer/
Larry H. Bernstein, MD, FCAP
17.3.2.5 Medicina personalizada: aspiraciones clínicas de las micromatrices
17.3.2.5 Personalized Medicine: Clinical Aspiration of Microarrays
Stephen J. Williams, PhD
17.4 Diseño racional de inhibidores y activadores alostéricos mediante el modelo de cambio poblacional: validación in vitro y aplicación a un biosensor artificial
17.4 Rational Design of Allosteric Inhibitors and Activators Using the Population-Shift Model: In Vitro Validation and Application to an Artificial Biosensor
Stephen J. Williams, PhD
17.5 La relación entre la coagulación y el cáncer afecta a los cuidados paliativos
17.5 The Relation between Coagulation and Cancer affects Supportive Treatments
Demet Sag, PhD, CRA, GCP
17.6 Macrófagos asociados al tumor: ¿Siguen siendo un arma de doble filo?
17.6 Tumor Associated Macrophages: The Double-Edged Sword Resolved?
Stephen J. Williams, PhD
17.7 Cáncer y nutrición
17.7 Cancer and Nutrition
https://pharmaceuticalintelligence.com/2015/05/04/cancer-and-nutrition/
Larry H. Bernstein, MD, FCAP
17.8 Medio ambiente y cáncer
17.8 Environment and Cancer
https://pharmaceuticalintelligence.com/2015/05/06/environment-and-cancer-11-3-4/
Larry H. Bernstein, MD, FCAP
Resumen
Summary
Capítulo 18: Nuevos medicamentos contra el cáncer en ensayos clínicos
Chapter 18: New Cancer Drugs in Clinical Trials
18.1 Múltiples proyectos genómicos sobre el cáncer de pulmón sugieren nuevas dianas; orientación de la investigación para el cáncer de pulmón no microcítico
18.1 Multiple Lung Cancer Genomic Projects Suggest New Targets, Research Directions for Non-Small Cell Lung Cancer
Stephen J. Williams, PhD
18.2 Desarrollo de quimiorresistencia a los tratamientos dirigidos: alteraciones de la señalización celular y del cinoma
18.2 Development of Chemoresistance to Targeted Therapies: Alterations of Cell Signaling & the Kinome
Stephen J. Williams, PhD
18.3 Nuevos mecanismos de resistencia a nuevos agentes
18.3 Novel Mechanisms of Resistance to Novel Agents
https://pharmaceuticalintelligence.com/2016/01/12/novel-mechanisms-of-resistance-to-novel-agents/
Larry H. Bernstein, MD, FCAP and Stephen J. Williams, PhD
18.4 Respuestas tóxicas registradas a los nuevos fármacos en ensayos clínicos
18.4 Toxic Responses Recorded for New Drugs in Clinical Trials
18.4.1 La toxicidad hepática detiene el ensayo clínico de un antagonista de la PAI para tumores sólidos avanzados
18.4.1 Liver Toxicity halts Clinical Trial of IAP Antagonist for Advanced Solid Tumors
Stephen J. Williams, PhD
18.4.2 Buenas y malas noticias sobre el tratamiento del cáncer de ovario
18.4.2 Good and Bad News Reported for Ovarian Cancer Therapy
Stephen J. Williams, PhD
18.4.3 Surgen nuevos mecanismos de toxicidad
18.4.3 Novel Mechanisms of Toxicity Emerge
Stephen J. Williams, PhD
18.5 Los NIH estudian las directrices de tratamiento con CAR-T: informe del Comité Consultivo sobre el ADN recombinante
18.5 NIH Considers Guidelines for CAR-T therapy: Report from Recombinant DNA Advisory Committee
Stephen J. Williams, PhD
18.6 Innovación en la inteligencia biofarmacéutica del cáncer
18.6 Innovation In Cancer Biopharmaceutical Intelligence
Larry H. Bernstein, MD, FCAP
Capítulo 19: Relaciones entre el cáncer y las enfermedades cardiovasculares por Aviva Lev-Ari, PhD y RN
Chapter 19: Relations between Cancer and Cardiovascular Diseases by Aviva Lev-Ari, PhD, RN
19.1 Cáncer, respiración y el peligro del corazón en los pacientes con cáncer
19.1 Cancer, Respiration and the Peril of the Heart in Cancer Patients
Larry H. Bernstein, MD FCAP and Aviva Lev-Ari, PhD, RN
19.2 Reuben Shaw, doctor en genética e investigador del Instituto Salk: el metabolismo influye en el cáncer
19.2 Reuben Shaw, Ph.D., a geneticist and researcher at the Salk Institute: Metabolism Influences Cancer
Aviva Lev-Ari, PhD, RN
19.3 Tumores cardíacos: etiología y clasificación
19.3 Heart Tumors: Etiology and Classification
https://pharmaceuticalintelligence.com/2014/01/08/heart-tumors-etiology-and-classification/
Aviva Lev-Ari, PhD, RN
19.4 Amiloidosis con miocardiopatía
19.4 Amyloidosis with Cardiomyopathy
https://pharmaceuticalintelligence.com/2013/03/31/amyloidosis-with-cardiomyopathy/
Larry H. Bernstein, MD FCAP
19.5 Estabilizadores que previenen la toxicidad amiloidótica de los cardiomiocitos mediada por la transtiretina
19.5 Stabilizers that prevent Transthyretin-mediated Cardiomyocyte Amyloidotic Toxicity
Larry H. Bernstein, MD FCAP
19.6 Ciencia de los síntomas del cáncer: sobre los mecanismos que subyacen a la expresión de los síntomas relacionados con el cáncer
19.6 Cancer Symptom Science: On the Mechanisms underlying the Expression of Cancer-related Symptoms
Aviva Lev-Ari, PhD, RN
19.7 Tratamientos
19.7 Therapies
19.7.1 Programas de cardiooncología y oncocardiología: tratamiento de pacientes con cáncer con antecedentes de enfermedades cardiovasculares
19.7.1 Cardio-Oncology and Onco-Cardiology Programs: Treatments for Cancer Patients with a History of Cardiovascular Disease
Aviva Lev-Ari, PhD, RN
19.7.2 Radioterapia y quimioterapia: el riesgo farmacológico de desarrollar enfermedades cardiovasculares
19.7.2 Radiation and Chemotherapy Therapy: The Pharmacological Risk for Developing Cardiovascular Disease
https://pharmaceuticalintelligence.com/2014/01/08/20316/
Aviva Lev-Ari, PhD, RN
19.8 Tercera Conferencia Anual de la Red Canadiense de Oncología Cardíaca, 20 y 21 de junio de 2013, Centro de Convenciones de Ottawa
19.8 3rd Annual Canadian Cardiac Oncology Network Conference, June 20 –21, 2013, Ottawa Convention Centre
Aviva Lev-Ari, PhD, RN
Capítulo 20: Investigación del cáncer en Technion, Instituto Tecnológico de Israel
Chapter 20: Cancer Research @ Technion, Israel Institute of Technology
20.1 Avances recientes en la investigación del cáncer en Technion, Instituto Tecnológico de Israel, 2015
20.1 Recent Breakthroughs in Cancer Research at the Technion, Israel Institute of Technology, 2015
Stephen J. Williams, PhD
20.2 Technion: orientaciones en la investigación del cáncer
20.2 @Technion: Directions in Cancer Research
20.2.1 Avances médicos: un investigador israelí predice dónde se extenderá el cáncer
20.2.1 Medical Breakthrough: Israeli Researcher Predicts Where Cancer Will Spread
Evenila Cohn, PhD
20.2.2 El cáncer de páncreas en la encrucijada del metabolismo
20.2.2 Pancreatic Cancer at the Crossroads of Metabolism
https://pharmaceuticalintelligence.com/2015/10/13/pancreatic-cancer-at-the-crosroad-of-metabolism/
Demet Sag, PhD, CRA, GCP
20.2.3 Lista de avances en la investigación del cáncer y el desarrollo de fármacos oncológicos por parte de los premiados por el Fondo de Investigación del Cáncer de Israel
20.2.3 List of Breakthroughs in Cancer Research and Oncology Drug Development by Awardees of The Israel Cancer Research Fund
Aviva Lev-Ari, PhD, RN
20.2.4 Laboratorios de investigación sobre el cáncer en la Facultad de Medicina del Technion: Centro de Investigación del Cáncer y Biología Vascular Janet y David Polak
20.2.4 Cancer Labs at School of Medicine @ Technion: Janet and David Polak Cancer and Vascular Biology Research Center
Aviva Lev-Ari, PhD, RN
20.2.5 Inmunidad y defensa del hospedador: bibliografía de investigación en el Technion
20.2.5 Immunity and Host Defense – A Bibliography of Research @Technion
Aviva Lev-Ari, PhD, RN
20.2.6 Interacciones hospedador-tumor durante el tratamiento del cáncer: laboratorio del Dr. Yuval Shaked en el Technion
20.2.6 Host – Tumor Interactions during Cancer Therapy – Dr. Yuval Shaked’s Lab @Technion
Aviva Lev-Ari, PhD, RN
20.3 Technion: acuerdos, asociaciones y colaboraciones
20.3 @Technion: Deals, Partnerships, and Collaborations
20.3.1 La empresa emergente de inmunoterapia celular universal de nueva generación Adicet Bio, de Menlo Park, California, se lanza con una financiación de 51 millones de dólares por parte de OrbiMed
20.3.1 Next-generation Universal Cell Immunotherapy startup Adicet Bio, Menlo Park, CA is launched with $51M Funding by OrbiMed
Aviva Lev-Ari, PhD, RN
20.3.2 Soluciones para el mieloma múltiple, un cáncer formado por células plasmáticas malignas: colaboración de la NYU y el Centro Integral del Cáncer del Technion
20.3.2 Solutions for Multiple Myeloma – a cancer formed by Malignant Plasma Cells: Collaboration of NYU and Technion Integrative Cancer Center
Aviva Lev-Ari, PhD, RN
20.3.3 Biomarcadores del cáncer detectados con un alcoholímetro: esfuerzo colaborativo de tres universidades
20.3.3 Biomarkers of Cancer detected by BreathAnalyzer – An Collaborative effort of three Universities
Aviva Lev-Ari, PhD, RN
20.3.4 El Technion creó el centro de biología estructural más avanzado de Israel
20.3.4 Technion established the most advanced Center for Structural Biology in Israel
Aviva Lev-Ari, PhD, RN
20.3.5 Instituto de Innovación Technion-Cornell en Nueva York: los investigadores postdoctorales mantienen la licencia exclusiva de su propiedad intelectual y reciben una cantidad fija de capital si crean una empresa subsidiaria
20.3.5 Technion-Cornell Innovation Institute in NYC: Postdocs keep exclusive license to their IP and take a fixed dollar amount of Equity if the researchers create a Spinoff company
Aviva Lev-Ari, PhD, RN
Epílogo: implicaciones terapéuticas para la terapia dirigida a partir del resurgimiento de la «hipótesis» de Warburg
Epilogue – Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’
Dr. Larry H. Bernstein, MD, FCAP
Serie C: libros electrónicos acerca del cáncer y la oncología
Tratamientos contra el cáncer:
Metabólicos, genómicos, intervencionistas, inmunoterapia y nanotecnología para la administración de tratamientos
Cancer Therapies:
Metabolic, Genomics, Interventional, Immunotherapy and Nanotechnology in Therapy Delivery
SEGUNDO VOLUMEN
http://www.amazon.com/dp/B071VQ6YYK
PART C:
The Editorials of the original e-Book in
English in Audio format
Preface
Larry H. Bernstein, MD, FCAP
This volume on cancer and cancer therapeutics is somewhat a follow-up of the first, but it expands on the expansive research into the molecular studies of the basis of the group of diseases affecting many organs morpho-genetically having specific roles and having specific time frames in their development. The classes of tumors have been divided into those that are benign and those that are malignant. Those that are benign are limited growths, but many have a transitional period between benign and malignant. Those that are malignant have features of nuclear changes, changes in the nuclear/cytoplasmic ratio, and may have some disruption of the architecture in the case of premalignant epithelium. Biologically the cells differentiate from primitive mesenchymal cells into three basic cell types – epithelial, mesenchymal (fibroblasts), and neuromuscular. Consequently, the endocrine organs of the body are solid epithelial cells with a supporting mesenchymal stroma. They function in biosynthesis, and therefore, have a requirement for NADPH for their function. The lining of hollow organs is epithelial, beneath which there is a mesenchymal layer, and beneath that is a muscularis. In all cases there is a vasculature lined by endothelial cells, with or without a muscular layer. The heart is a muscular organ with a unique neurological support, and the brain and spinal cord are neurological organs. Then there is the immune system and the hematological system that evolved in concert, with the evolution of an antibody mediated and a cell mediated immune system which is, humoral on the one hand, and thymus-derived, on the other hand. In addition, there is a lymphatic drainage system separate from the blood circulation. This is a not so simple or complete description of the anatomical and embryological features of the eukaryote and mammalian organism.
It is from this foundation that we have come to recognize the concept of malignant transformation prior to the molecular and biochemistry subcellular revolution that has occurred in the 20th century. Each organ has a different natural history of physiological function, and deviation from normal cellular behavior. The deviation may be preceded by years of chronic disease, and it may appear associated with virus, radiation, or environmental exposures, any or none of which can be ascertained. There may also be a family history, and a finding of a genomic signature, as with breast cancer and Her-2 Neu. The latter has become important for identifying “epidemiological risk” in a relationship to a population, but not necessarily a predictor of an individual’s risk, which poses a problem for counseling.
Introduction to Cancer Therapies
Larry H. Bernstein, MD, FCAP
In the last 10 years there has been explosive work in cancer research at major universities in the United States, Europe, and worldwide. This research has extended our knowledge beyond basic metabolic pathways of carbohydrate, protein, lipid, and nucleotide synthesis and cellular anabolic and catabolic processes, but well into the realm of cell-cell interactions and signaling pathways, and a new realm has opened that is not genomic, but epigenetic – which is in the realm of cell regulation and genomic expression. New concepts of metabolic, endocrine, neurological and psychosocial diseases, and cancer are emerging with rapidity. Putting it all into a comprehensible framework will be necessary to overcome problems in pharmacotherapy
What has become apparent is the complexity of carcinogenesis and treatments required because of the evolving understanding not only of cancer genomics, but also of the cancer “metabolomes”, which may differ in patients by age, metabolic pathways, signaling pathways, environmental factors, to name a few. As a result of this realization, the need for combinations of surgical approach, radiotherapies, and pharmacological therapies has become the central issue of oncology. This will be elaborated in the following chapters that are bundled into parts.
WATCH VIDEO
https://www.youtube.com/watch?v=QyoZuxHhvvE
Part One
Cancer Genomic and Metabolic Targeted Pharmacotherapy
Chapter 1: Looking Into the Depths of the Cancer Metabolome
Introduction
Larry H. Bernstein, MD, FCAP
Cancer Cell Metabolism- There Is No ROS for the Weary
Chi V. Dang, Commentary on Ros et al., p. 328 (1).
Cancer Discov; 2(4); 304–7
http://dx.doi.org:/10.1158/2159-8290.CD-12-0069
Using a high-throughput short-hairpin RNA library screen targeting 222 metabolic nodes, Ros and colleagues identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), a glycolytic enzyme that shunts glucose into the pentose phosphate pathway for NADPH production, as a critical node for the survival of prostate cancer cells. Blocking PFKFB4 induces reactive oxygen species and cancer cell death, suggesting that PFKFB4 could be therapeutically targeted.
Cancer cells are on the go, adsorbing lipids and picking up nutrients for deregulated self-replication, which frequently culminates in the death of the host. In this issue of Cancer Discovery, Ros and colleagues (1) document the dependence of prostate cancer cells on 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4), a glycolytic enzyme that plays an important role in attenuating reactive oxygen species (ROS) for the weary cancer cell to survive and in lipid synthesis for the cancer cell to replicate. Normal mammalian cells, such as cells of the gut or bone marrow, can replicate at significant rates for tissue homeostasis. Tissue stem cells or immune cells stimulated by growth factors or cytokines undergo a signal transduction and transcriptional program that permits both cell mass accumulation through macromolecular synthesis (e.g., lipid, protein, and nucleic acid synthesis) and acquisition of a commensurate bioenergetic supply. Nutrient-depleted, lowered energy conditions trigger AMP-activated protein kinase, which diminishes cellular ATP consumption and stimulates self-eating or autophagy to recycle cellular components as energy. In nutrient-replete conditions, glucose modulates transcription through its conversion to intracellular hexosephosphate and hexosamine, whereas glutamine import is required for activation of mTORC1 to stimulate cell growth (2, 3). Growth factor-receptor signaling further bolsters the cell growth program by activating mTORC2 and AKT, which can directly stimulate glycolysis, and early response genes such as MYC (Fig. 1A). The MYC gene produces a pleiotropic transcription factor that stimulates ribosome biogenesis, nucleotide synthesis, DNA replication, and the import of both glucose and glutamine to support the bioenergetic needs of a growing cell (4).
Figure 1 (not shown).
A, diagram depicts –
- Receptor signaling and nutrient import.
- Receptor signaling, through phosphoinositide 3-kinase (PI3K), stimulates mTORC2 and AKT as well as the MYC oncogene, which stimulates ribosome biogenesis and biomass accumulation for cell proliferation.
- Glucose and glutamine import stimulated by MYC induces mTORC1 and a collateral pathway of activating protein synthesis and ribosome biogenesis.
- Glutamine is shown converted to glutamate and then to α-ketoglutarate for further mitochondrial oxidation.
- Glucose is converted to lactate or to acetyl-CoA, which is further oxidized in the mitochondrion. Glucose is also shown shunted to the PPP to produce NADPH and ribose-5-phophate.
- B, glycolytic conversion of glucose to pyruvate and its conversion to ribose-5-phosphate via the pentose phosphate pathway.
- Glucose is transported into the cell and phosphorylated to glucose-6-phosphate by hexokinases, and then to fructose-6-phosphate by glucose phosphate isomerase.
- Fructose-6phosphate is phosphorylated by PFK1, which is positively allosterically regulated by fructose-2, 6-phosphate (F2, 6P), to fructose-1,6-phosphate and subsequently metabolized to pyruvate for further oxidation in the mitochondrion, a rich source of ROS.
- The levels of F2,6P are regulated by the PFK2 family members, PFKFB4 and TIGAR (a target of p53) that dephosphorylates F2,6P and PFKFB3 that generates F2,6P from fructose-2phosphate.
- Increased PFKFB4 or TIGAR lowers F2,6P and hence decreases PFK1 activity, shunting glucose-6-phosphate into the pentose phosphate pathway for production of ribose-5-phosphate and NADPH.
- NADPH reduces glutathione and thereby inhibits ROS.
Intriguingly, the necessity of PFKFB4 for cell survival extends beyond prostate cancer because other cancer cell lines are also sensitive to knockdown of PFKFB4 expression. Why PFKFB4 levels are elevated in prostate and other cancer cell lines is not known. Diminished PFKFB4 expression, however, does not seem to dramatically affect growth of the normal human prostate epithelial cell line RWPE1. Until there are further studies, it seems premature to suggest that PFKFB4 is not essential for normal cell proliferation in light of a significant overlap in the metabolic profiles of normal T cells and that of lymphoma. MYC induces glucose and glutamine metabolism in normal T-cell mitogenesis and proliferation of neoplastic lymphocytes, suggesting a significant overlap between normal and neoplastic cell metabolism. The difference, however, is that deregulated oncogene expression renders tumor cells addicted to nutrients.
All 3 prostate cancer cell lines studied by Ros and colleagues are highly glycolytic. It is notable, however, that RWPE1 is also glycolytic and does not display the truncated TCA cycle of normal prostate. Ros and colleagues also report the lack of significant dependence of these prostate cancer cell lines on glutamine, which contrasts with some previous published studies. It is notable that glutamine appears to be a significant substrate for the TCA cycle, particularly under hypoxia. In fact, glutamine can contribute to a significant fraction of lipids through its conversion to α-ketoglutarate and subsequent reductive carboxylation to isocitrate, which is then converted to citrate for lipid synthesis via ATP citrate lyase. Furthermore, under limiting glucose levels in the hypoxic tumor microenvironment, glutamine fills in the TCA cycle as well as supports the synthesis of glutathione. Notwithstanding these nuances, the article by Ros and colleagues and earlier studies from the laboratories of Cheng and Vousden, and Clem and colleagues underscore the importance of the PFK2 family of enzymes in tumor metabolism, which might be exploitable for cancer therapy.
- Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/ fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov 2012; 2:328–43.
- Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2010; 12:21–35.
- Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 2011; 10:671–84.
- Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011;11:325–37.
Summary
The first chapter has covered a range of topics related to the metabolism and proliferation of cancer cells, which have been viewed as self-perpetuating without apoptosis. There is important consideration of enzyme catalysis in cell metabolic pathways and a relationship of metabolic expression to the term “epigenetics”. The term epigenetics is in common use, but it is not informative, intending to indicate cellular expression that is not transcribed from the genome. However, in the multiorgan species, differences in expression occur among organs in relationship to adaptation to the external and internal extracellular milieau. It also included the work on both inhibiting and noncoding RNAs, and also the work of Jennifer Duoda on DNA genomic engineering. It concluded with the childhood acute leukemias, and bone marrow transplants.
Chapter 2: Finding Dysregulation in the Cancer Cell
Introduction
This chapter is very basic to the understanding of cancer. It begins with the Warburg effect that was a seminal discovery in the 1920s by the great biochemist of that century. The Warburg effect is a defining characteristic of cancer cells. The chapter does on to cover key metabolic pathways involved in the uniqueness of cancer cells, that have much similarity of one to another, more so than the organ of origin. This is, however, somewhat overstated because it is well recognized that endocrine cancers are considerably more indolent than squamous and adenocarcinomas of non endocrine tissue. NO Kaplan hypothesized that endocrine organs are distinguished by the predominance of the NADP, synthetic form of pyridine nucleotide, and that energy dependent tissues have a predominance of the NAD form. The discussion of autophagy is important in the previously mentioned balance between repair and cell death (apoptosis). This is an insight that comes in the late twentieth century. Isocitrate dehydrogenase isoenzyme becomes important for a tie in with the impaired respiration of the malignant cell. Cell matastasis is discussed, and there is an introduction to personalized medicine.
Summary
The second chapter covers material that is essential for an understanding of cancer biology. Foremost is the observation of impaired respiration and the mitochondrial pathways involved. While cancer cells replicate, the metabolic dependence is on the anaerobic pathways, which yield 2 ATP vs 38 ATP by aerobic metabolism through the Krebs Cycle (tricarboxylic acid cycle). In addition, there is also an equilibrium, or dysequilibrium between autophagy and apoptosis. As to the life of the host, the growing malignancy robs the host of metabolic nutrients and creates an environment in which there is a metabolic acidosis from lactic acidemia. Related to this phenomenon, There is a background proinflammatory state, and with it there is gluconeogenesis involving lean body mass. This results in the conversion of amino acid to glucose for fuel. This is the basis for cancer cachexia. The study of mechanism of the metastatic behavior of cancer cells has also been presented. When cancers reach the metastatic stage, it becomes the highlight of a systemic disease, and this introduces a focus on chemotherapy. This chapter also has covered both hematologic and solid organ malignancies.
Chapter 3: Personalized Medicine in Cancer
Introduction
The importance of personalized medicine is highlighted by the realization that cancers may retain characteristics of their organ of origin, they also differ with their types. This is apparent from the different biological behaviors between endocrine and non-endocrine tumors. It also is observed that cancers of the same type are different in their behavior, and also that cancers have characteristics that are defining for malignancy. These tumors invade to regional lymph nodes and to distant sites. The patients having the same cancer have differences in histological grade and in cancer STAGE. Even this knowledge does not predict outcomes or choice of treatments with great success. The key to guide therapy requires a correct knowledge of genomic, metabolic, and regulatory features which are the necessary benchmark for targeting therapy. Only with such a knowledge will it be possible to develop a personalized oncologic treatment.
Summary
The material just completed covers the common interest in personalized medicine. The genomic revolution has given hope to a growing expectation of the emergence of personalized medicine. The task is still a difficult journey. Personalized medicine will require that individualized treatments are given to each patient with a defined malignancy. One factor in the discussion that can’t be ignored is the heterogeneity of expression within cancer types. Another consideration is that in cancer progression, there are mitotic changes that complicate the treatment. This results in the need for accurately identifying both genotype and phenotype because expression of the tumor is essential, and it also means that expression introduces a time domain in the process.
Part Two
Interventional Oncology
Chapter 4: Surgery
Introduction
The treatment of “tumors” by surgical means goes back centuries. The introduction of anesthesia for the treatment of pain introduced huge possibilities for progress in surgery. In the Eighteenth Century, there were few physicians who were scientifically educated, and they were mainly in European countries. The best education available was in great institutions that had a tie in with religious scholarship. In the New World, many physicians were also ministers. This changed with the elimination of schools for medical and premedical education that had no basis in science. It came in the Twentieth Century with the Flexner Report, and Johns Hopkins University became the outstanding medical institution. Johns Hopkins had two among the giants of medical education – Halsted and Osler. They were indeed, the fathers of modern surgery and medicine. This chapter reviews the advances in surgery of cancer in the 20th Century.
Summary
Chapter 4 has covered the progress of surgery in the treatment of cancer. The progress of surgical procedures has been highly dependent on the progress in radiology and interventional radiology, and as much dependent on the advances made in anesthesia and pain control. The progress in anesthesia gave better access to local excision with reduction of pain, and also to better management of the patients vital signs during long and difficult procedures. The advances in radiology led to surgical removal with greater precision under advanced imaging techniques.
Chapter 5: Radiation Therapy
Introduction
We have seen how important radiology contributed to the development of surgery. The first Nobel Prize in Physics went to Roentgen for his discovery of the x-ray, which gave rise to methods in both medical and non-medical use. This chapter introduces topics of interest in radiation as therapy.
UPDATED on 5/17/2021
Happy 80th Birthday: Radioiodine (RAI) Theranostics: Collaboration between Physics and Medicine, the Utilization of Radionuclides to Diagnose and Treat: Radiation Dosimetry by Discoverer Dr. Saul Hertz, the early history of RAI in diagnosing and treating Thyroid diseases and Theranostics
Guest Author: Barbara Hertz
5.1 External beam radiotherapy (EBRT) & Brachytherapy
Larry H.Bernstein, MD, FCAP
A Successful Case of Treatment of Prostate Cancer
“A Cardiff University professor whose pioneering research helped change the way prostate cancer is treated has been recognized with a major scientific award” Prof Malcolm Mason was recognized for his research in combining radiotherapy and hormone therapy. He thanked 1,025 men, mostly from the UK and Canada, who took part in a trial over 10 years. It showed the combined treatment significantly improved survival rates. In recognition of his work, Prof Mason, the head of Cardiff University’s Institute of Cancer and Genetics at the School of Medicine, was presented with the William Farr Medal at a dinner in London on Thursday. He said: “Prostate cancer accounts for 10,000 male deaths in the UK each year and is the second most common cause of cancer death in men, after lung cancer. Still alive “The trial was conducted because it was unknown whether radiotherapy would help to extend the lives of men with prostate cancer and reduce their chances of dying from their cancer.” What the trial proved, however, was that by providing radiotherapy in addition to hormone therapy, 74% of the men who took part in the trial were still alive after seven years, compared with 66% who did not have radiotherapy. All the men who took part in the randomized controlled trial – known in the UK as PR07 – between 1995 and 2005 had had “locally advanced” prostate cancer diagnosed, which had grown outside the surface of the prostate but had not spread further. Half the group were treated with hormone therapy, a standard form of drug treatment, and the other half with a combination of the same hormone therapy and an additional course of radiotherapy. The researchers also found that those who received radiotherapy were about half as likely to die of their prostate cancer. Prof Mason is also director of the Wales Cancer Bank, based at Velindre Hospital in Cardiff. The centre, one of the foremost of its kind in the world, has revolutionized opportunities for cancer research, collecting blood and tissue samples from thousands in Wales whether suffering from cancer or with a potential cancer diagnosis. Of his award, the professor said: “It’s always pleasing to be recognized but in reality this award goes to all the men who took part in this trial, which has shown radiotherapy to be so worthwhile for patients with the type of prostate cancer we call ‘locally advanced’ . “This is only just the start – the next stage will be to ensure that the results of this trial are implemented into treatment recommendations as quickly as possible,” he added. Cardiff University vice-chancellor Prof Colin Riordan congratulated Prof Mason on his “richly deserved award”, instituted by the Worshipful Society of Apothecaries. “By answering the important question of whether prostate cancer patients would benefit from radiotherapy, Prof Mason has helped alter the way prostate cancer is treated, making sure that treatment decisions are based on the best possible evidence.”
SOURCE
Itzhaz Golan, PhD
Chapter 6: Chemotherapy
Stephen J. Williams, PhD
Introduction
This chapter is concerned with the actions and side effects of chemotherapy. Chemotherapy has been a very significant advance in medicine giving rise to the medical specialty of Oncology. The first victory in Oncology might have been traced to treatment of childhood leukemia in Boston Children’s Hospital. It is clear that this typr of treatment would be first to develop in treatment of blood disorders, which are systemic by definition. The use of chemotherapeutics has become important in advanced solid tumors with local or distant metastasis. This gives rise to a treatment based on grade and stage. Grade defines the characterization of the tumor in situ. Stage defines the characterization in terms of local or distant metastasis. Metastasis is an advanced invasion beyond the limits of confinement of the tumor. Both radiation and chemotherapy become essential in the treatment plan.
Summary
This chapter has covered major advances in the use of oncologic drugs and the side effects to consider. These drugs are often given concurrently with radiation therapy, and in many advanced diseases, there is multi-drug therapy. Chemotherapy is an emerging discipline. Therapy has to be adjusted in many cases because of multi-drug resistance. Just as in antibiotic treatment for infection, cancer treatment is confounded by drug resistance. As malignancy progresses, there is usually a concomitant resistance when the malignancy does not recede. In addition, there may be remission, only to see recurrence some time later.
Part Three
Immunotherapy, Biologics Drugs Options &
Targeted Therapies for the Immune System of the Cancer Patient
Introduction
Larry H Bernstein, MD, FCAP
This project has been the most intense search for answers in my career as a pathologist. It was perhaps made somewhat necessary after my retirement from a career in clinical pathology with a feeling of not having finished my life work, which began in my childhood reading of Paul De Kruif’s Microbe Hunters, and continued with my readings in collegiate course in scientific German. I began serious work on the crystallins of the eye lens and also on the ontogeny of the lactic dehydrogenase isoenzymes in the laboratory of Prof. Harry Maisel after my sophomore year in medical school, and when I graduated in 1968, I had chosen a career in pathology, but a career limited to service in anatomic pathology would not be a good fit. I was mentored in residency by a superb pathologist and biochemist who suggested after a year that I work in the laboratory of Nathan O. Kaplan, at University of California, San Diego, where I completed my training in biochemistry and enzymology, in particular, and also completed my residency in pathology under Averill Liebow. It was an intense experience. Unappreciated by me at the time, NO Kaplan never used the terminology for the pyridine nucleotide coenzymes – NAD and NADP – but stuck to the terms used by Otto Warburg, DPN and TPN. I was still not prepared for the half century old hypothesis by Warburg that cancer involves a dysmetabolism of the mitochondrion, and he had referred to the work 60 years earlier by Louis Pasteur to identify in the proliferation of cancer cells, a reliance on glycolysis (as in fermentation), even in the presence of oxygen. However, in my first academic appointment I continued studies of the mitochondrial and cytoplasmic malate dehydrogenases. I developed a simple assay to determine the ratio of the two activities based on the work done earlier on differences in their inhibition by a ternary complex formed between oxaloacetate and the NAD+ formed during the forward reaction with the reduced coenzyme. I also obtained fast growing and minimal deviation hepatocellular carcinoma tissue from my Chairman, Herschel Sidransky, and found interesting differences between cytoplasmic malate dehydrogenases from benign liver, minimal deviation and fast growing cancer that I could not continue long term.
The Warburg investigations have been re-explored in a new light in the 21st century. The scientific instrumentation and the computational tools available today have brought a greater depth to biological and medical sciences, which has given real promise to a reconstruction of pharmaceutical sciences. This is the case for infectious diseases, autoimmune disease, diabetes, genetic diseases, cardiovascular disease, endocrinology, and also cancer.
The difficulty with cancer has been the variety of presentations and courses of development for carcinogenesis by types of tissue, age, and sex, as well as differences within types. This has been made clear by the significant number of mutations that have been uncovered associated with cancers in humans and animal models. The first generations of cancer therapies were directed at DNA and replication, and they have carried toxicities to nonmalignant cells. However, we have unlocked an inner dimension of cells in which there are networks of interacting pathways that are involved in cellular regulation. We also have a much better grasp of the processes of cell replication, cellular remodeling, proliferation, and cell death, which ranges from some degree of autophagia involving mitochondria, the endoplasmic reticulum, and the lysosome, and cell death (apoptosis). The proteins, enzymes and pathways have been evolved for thousands of years, and are of primordial descent.
This chapter is concerned with the possibilities for pharmaceutical developments in cancer for the near future. It will cover the outlined subchapters. It is based on extensive searches for articles using a combination of sources. The basic theme of these presentations will be in more than one direction as follows:
- The encapsulation of a drug on conjugates so embedded that the action is locally directed to the site of the tissue disrupted.
- The targeting of specific pathways related to cancer oncogenes, or more specifically, having a key role in cell proliferation, cell adhesion, and metastatic potential.
- The effect of overexpression of identified pathways, and the effect of suppression of the same pathways, and the interaction between other key pathways that are upregulated or downregulated.
- The investigation of these mechanisms brings one to some conclusion about the amazing intricacy of how we age, and how we interact with a stressful environment.
This is what makes it difficult to design a treatment that is the so thought of “magic bullet”, and it necessitates more than one course of treatment, and combination treatments will probably not go away. However, there may still be many opportunities for treatments that are optimum for the patient and the condition. In addition, there is another dimension that was not so possible even a decade ago.
The clear knowledge of how these pathways are related to the particular cancer, and the ability to measure the substrates and small molecules involved has introduced a better way to follow the effectiveness of treatment, and at an early stage.
The reader will find that not all of the treatments are necessarily by use of a monoclonal antibody. All of the reactions do rely on an intermolecular reaction like a lock-and-key that binds with a critical small molecule that is critically engaged in a regulatory process. Whether it is sufficient is a matter to be discovered. We are now familiar with a library of terms, such as, conformational change, linkers, promoters, inhibitors, upregulation, downregulation, baggage-carriers, heteromer, dimer, trimer, etc. These all are players in this process.
Part Five
Alternative Therapies
Chapter 13: Complementary and Alternative Therapies
13.1 Complementary and Alternative Therapies
The Voice of Larry H Bernstein, MD, FCAP
This chapter proceeded essential information about the pharmacooncologic treatment of cancer not previously discussed. It included discussions of complementary and alternative medicines. These treatments have not undergone clinical trials, and in several examples this should be considered. Most important is that these offer very low toxicity. Also important is the use of hormone therapy, which was established after the discovery of hormones in cancer progression. Also known is the simple fact of hormone resistance. The treatment with anti-angiogenesis agents has not proved efficacious in a experience despite the great promise expected. Allogeneic stem cell transplantation and graft-versus host reaction are also covered.
Part Seven
Transitional Stages of Cancer
Chapter 15: In-situ Malignancy to Cancer
The Voice of Larry H Bernstein, MD, FCAP
Introduction
Immunotherapy has advanced over the last half century. The use of antibodies has historical been for identification in diagnostics. Immunology was initially only concerned with B-cells and antibodies, and owes much to Robert Good, MD, a pioneer in pediatric immunology. The production of antibodies initially was polyclonal, which resulted in a mixture of antibodies. This changed with the introduction of monoclonal antibodies. However, this was no simple matter. It complicated the production of diagnostic antibodies because two manufactured monoclonal antibodies might recognize a different ligand for binding site. This chapter, however, is focused on the use of antibodies for immunotherapy. The application of monoclonal antibodies is clearly the best choice, provided the target binding site is the definitive site. In addition to the antibody, there has been the emerging technology for the delivery of the immunotherapy. That is a topic for discussion. The related chapter on nanotechnology and aptamers is a separate chapter.
Summary
I introduced these presentations with a message of high complexity and intricate networks that govern our cells. We have had a spectacular development in the research on genomics, but the picture was incomplete. There are repeated discoveries of new oncogenes that are related to cancer discoveries. In some cases they have had a large impact on diagnosis and relationship to an at risk population, most notably in breast cancer. Then there is the long history of PSA in prostate cancer. These are biomarkers, and biomarkers of another generation are coming into play. These biomarkers are the signaling molecules that are directly involved in the tumorigenesis progression.
While we know about the large number of genomes that can develop mutations over a lifetime, we cannot necessarily make a determination of cause and effect. In addition, the study of genomics is not necessarily related to phenotypic observables. The genome is the script, and it is not directly engaged in the dynamic processes of the living cell. We now have a host of molecular agents that interact with genetic chromatin, or interact with the cytoskeleton, which can have an impact in the immediate cell structure and function. There are small RNAs, large RNAs, and peptides and proteins. The cell is engaged with other cells by an intercellular matrix, by transport proteins, by pore structures that convey electrolytes, and the cell is sensitive to hydrostatic pressure and to temperature.
We also see that there are protein substrate, and protein-protein interactions that occur in close proximity and affect protein conformation. These many reactions occur in milliseconds to maybe a hundredth of a millisecond. This is the architecture needed to survive in a stressful environment, which might arise intracellularly as well as extracellulary.
This chapter has gone into much detail about the relationship of signaling cascades and key regulatory targets involved in cell stemness, cell proliferation, cell aggregation, and cell metastasis. The reactions discussed don’t bring into the discussion of a dimension of the metabolic process that also needs consideration. Some reactions have been unknown until the development of mass spectroscopy. If there is a reaction, we have to consider either a cationic cofactor, or a nucleotide catalyst. Briton Chance pioneered the study of in vivo cell monitoring for changes in the ratio of NADH/NAD+. This is a dynamic viewing of cellular processes.
There are three articles in the Apr 15, 2015 issue of Genetic Engineering News (Genengnews.com) that are specifically related to this discussion.
- Vicki Glasser – Diverse Pathways to Drug Targets.
Protein paths through the gene-expression undergrowth have been well trodden, but RNA paths want wear too.
More than 90 percent of the genome that is transcribed into RNA is not translated into protein, and the growing numbers of naturally occurring microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) being identified and characterized, the important role that they have in normal biological processes and diseases is becoming ever more clear. An example to illustrate this point is the case of a Phase II clinical study of micravirsen, antisense oligonucleotide, in patients with hepatitis C (hep C), published in 2013 in the New England Journal of Medicine that describes its effectiveness as dependent on the miR-122 binding hepC for stability, and inhibition of miR-122 in HCV infected patients was associated with decreased levels of HCV that continued beyond the treatment period.
However, does this also apply to cancer. According to George Calin and coworkers at MD Anderson Cancer Center, Houston, Tx, regulatory RNAs – both miRNAs and other ncRNAs are being investigated to identify miRNAs of about 21-22 nucleotides length that can serve as reliable biomarkers for cancer diagnosis and to guide treatment. These miRNAs are stably expressed in tumor cells and the exosomes are present in body fluids, where they act like hormones and signaling molecules. The work was described in 2014 in CA: A Cancer Journal for Clinicians (“MicroRNAome genome: a treasure for cancer diagnosis and therapy”, and was also presented in Feb 2014 at the Molecular Med Tri Conference in San Francisco. Nevertheless, finding a miRNA target is difficult because an individual miRNA could have a role in regulating tens, hundreds, and even thousands of protein-coding genes. The message is to identify mRNAs that affect a single pathway of interest to help limit off-target effects. The solution depends on identifying which metabolic and/or signaling pathways are activated of inhibited.
- Lisa Heiden – Precision Tuning GPCR PathwaysG protein coupled receptors (GPCRs) are essential drug targets for therapeutic intervention due to their integral roles in a plathora of fundamental signal transduction pathways. But discovering, designing, and synthesizing GPCR-targeted compounds for modulating signaling has been difficult, mainly because the pathways are so complex. Consequently, of 800 proteins that have been classified as GPCRs only drugs have been developed against only 50.
- Kate Marusina – RNA Constructs: Thread Translational Needle
Noncoding RNA plays a major role in gene expression and gene regulation, and its malfunction often results in abnormal cellulat activity. This understanding led to the development of treatment strategies that use RNA both as therapeutics targets and treatment agents. This years’ Gordon Conference on Nanotechnology is dedicated to RNA nanotechnology research. Cancer pathways and miRNAs (that regulate the expression of more than 90 percent of the human genome) are linked, according to Carlo Croce at Ohio State University Institute of Genetics. miRNA is often the downstream target of an initial tumorigenic event. Dr. Croce’s team identified a cause of chronic lymphocytic leukemia (CLL) in a chromosomal region that is lost in 70 percent of CLL, which contains two miRNA genes, miRNA-15 and mi-RNA-16. They demonstrated that these are negative regulators of another gene in the cascade, BCL-2. In May 2014 AbbVie presented results from a Phase Ib clinical trial of ABT-199, a BCL-2 selective inhibitor. The response rate was 84% in patients with relapsed/refractory CLL. Furthermore, Peixuan Guo’s team at University of Kentucky Nanobiotechnology Center introduced the phi29 motor pRNA nanotechnology that is a hexameric pRNA nanoparticle with a ribozyme, a receptor-binding aptamer, a siRNA, an image reporter molecule, a bound drug site, and a component for endosome disruption. The key to success will be sustaining tumor suppression using the scaffold, targeting ligands and therapeutic modules that can be composed entirely of RNA. The prototype was achieved by packaging bacteriophage phi29 (pRNA) fragments designed to form multimeric RNA nanoparticles with defined size and structure.
Chapter 16: Reflections on the Promise of. Monoclonal Antibody Therapy
Introduction
This chapter has two not concordant issues. The first is the relationship to viruses and chronic inflammatory agents to the risk of developing cancer. It is not clear what the causal relationship is in some cases. The second is the emergence of monoclonal antibodies use in the treatment of cancers. In the first statement we have good knowledge of the relationship of hepatitis B and C to the long term risk of hepatoma, and of human papilloma virus to the risk of cervical cancer, and of a relationship of gastro-duodenal ulcer, and of gastric reflux to cancer risk. In the second statement we have far greater specificity for both diagnosis and for treatment in the development of monoclonal antibodies. There are limitations to the use of monoclonal antibodies. In diagnostics, a test for a disease marker may be directed at different sites on a protein identifier. In the case of treatment, the case may arise if there is a similar monoclonal antibody that is non-identical at the target site for two pharmaceutical drugs.
Summary
This chapter has covered in considerable depth the research into viruses and infection in the development of certain cancers. The mechanism is not known, except that there is a long term risk. In addition, we have reviewed some important types of cancer, the relationship to virus or inflammatory factor risk. Finally, we have explored the oncologic treatment of cancer using some very well established monoclonal onco-therapies.
Part Eight
Research & Future Directions for Cancer Therapy and Prevention
Chapter 17: The Future of Oncology
Introduction
The material that follows builds on what has come before. Surgery and radiation therapy have improved substantial in the last half century, but they have limits. Radiotherapy will expand with the use of radio-pharceutical probes to target cancers, which puts this treatment alongside of pharmacotherapy. Pharmaceutical therapy has enormous potential for improvement by improving the selectivity of the agents used and by reducing the toxicity to proximate non-malignant tissue. This is not going to be an easy task. Treating a cancer is like hitting a moving target and the dimensions we have to work in have time and space limitations. Given the changing mileau of the malignant tissue based on metabolic, signaling, and translational dynamics, we will have to face adjustment of treatments during a treatment phase, and we have to be prepared for recurrence. The challenge is not only in the science. The cost of pharmacotherapy is rising faster than our current medical system can handle.
Summary
The last chapter has considered some of the recent advances in pharmacotherapy for cancers based on good science. There has also been a presentation of some innovators as well as innovative methods for the leukemias, and for solid tumors. These treatments have involved better methods to arrest tumor growth and metastasis.
Epilogue
Therapeutic Implications for Targeted Therapy from the Resurgence of Warburg ‘Hypothesis’
Larry H. Bernstein, MD, FCAP