Google, Verily’s Uses AI to Screen for Diabetic Retinopathy
Reporter : Irina Robu, PhD
Google and Verily, the life science research organization under Alphabet designed a machine learning algorithm to better screen for diabetes and associated eye diseases. Google and Verily believe the algorithm can be beneficial in areas lacking optometrists.
The algorithm is being integrated for the first time in a clinical setting at Aravind Eye Hospital in Madurai, India where it is designed to screen for diabetic retinopathy and diabetic macular edema. After a patient is imaged by trained staff using a fundus camera, the image is uploaded to the screening algorithm through management software. The algorithm then analyzes the images for the diabetic eye diseases before returning the results.
Numerous AI-driven approaches have lately been effective in detecting diabetic retinopathy with high accuracy. An AI-based grading system was able to effectively diagnose two patients with the disease. Furthermore, an AI-driven approach for detecting an early sign of diabetic retinopathy attained an accuracy rate of more than 98 percent.
According to the R. Usha Kim, Chief of retina services at the Aravind Eye Hospital the algorithm permits physicians to work closely with patients on treatment and management of their disease, whereas increasing the volume of screenings we can perform. Automated grading of diabetic retinopathy has possible benefits such as increasing efficiency, reproducible, and coverage of screening programs and improving patient outcomes by providing early detection and treatment.
Even if the technology sounds promising, current research show there are long way until it can directly transfer from the lab into clinic.
SOURCE
https://www.healthcareitnews.com/news/google-verily-using-ai-screen-diabetic-retinopathy-india
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.