TomorrowWorld: A world where everyone has a robot, or why 2040 could blow your mind
Reporter: Aviva Lev-Ari, PhD, RN
Technological change is accelerating today at an unprecedented speed and could create a world we can barely begin to imagine.
In March 2001, futurist Ray Kurzweil published an essay arguing that humans found it hard to comprehend their own future. It was clear from history, he argued, that technological change is exponential — even though most of us are unable to see it — and that in a few decades, the world would be unrecognizably different. “We won’t experience 100 years of progress in the 21st century — it will be more like 20,000 years of progress (at today’s rate),” he wrote, in ‘The Law of Accelerating Returns’.
Fifteen years on, Kurzweil is a director of engineering at Google and his essay has acquired a cult following among futurists. Some of its predictions are outlandish or over-hyped — but technology experts say that its basic tenets often hold. The evidence, they say, lies in the exponential advances in a suite of enabling technologies ranging from computing power to data storage, to the scale and performance of the Internet (see ‘Onwards and upwards’). These advances are creating tipping points — moments at which technologies such as robotics, artificial intelligence (AI), biology, nanotechnology and 3D printing cross a threshold and trigger sudden and significant change. “We live in a mind-blowingly different world than our grandparents,” says Fei-Fei Li, head of the Stanford Artificial Intelligence Laboratory in California, and this will be all the more true for our children and grandchildren (see ‘Future focus’).
Kurzweil and others have argued that people find this pace of change almost impossible to grasp, because it is human nature to perceive rates of progress as linear, not exponential — much as when one zooms in on a small part of a circle and it appears as an almost straight line. People tend to focus on the past few years, but pulling back reveals a much more dramatic change. Many things that society now takes for granted would have seemed like futuristic nonsense just a few decades ago. We can search across billions of pages, images and videos on the web; mobile phones have become ubiquitous; billions of connected smart sensors monitor in real time everything from the state of the planet to our heartbeats, sleep and steps; and drones and satellites the size of shoeboxes roam the skies.
If the pace of change is exponentially speeding up, all those advances could begin to look trivial within a few years. Take ‘deep learning’, a form of artificial intelligence that uses powerful microprocessor chips and algorithms to simulate neural networks that train and learn through experience, using massive data sets. Last month, the Google-owned AI company DeepMind used deep learning to enable a computer to beat for the first time a human professional at the game of Go, long considered one of the grand challenges of AI. Researchers told Nature that they foresee a future just 20 years from now — or even sooner — in which robots with AI are as common as cars or phones and are integrated into families, offices and factories. The “disruptive exponentials” of technological change will create “a world where everybody can have a robot and robots are pervasively integrated in the fabric of life”, says Daniela Rus, head of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology in Cambridge.
After decades in development, applications of AI are moving into the real world, says Li, with the arrival of self-driving cars, virtual reality and more. Progress in AI and robotics is likely to accelerate rapidly as deep-pocketed companies such as Google, Apple, Facebook and Microsoft pour billions of dollars into these fields. Gill Pratt, former head of the US Defense Advanced Research Projects Agency’s Robotics Challenge, asked last year whether robotics is about to undergo a ‘Cambrian explosion’ — a period of rapid machine diversification (G. A. PrattJ. Econ. Perspect. 29, 51–60; 2015). Although a single robot cannot yet match the learning ability of a toddler, Pratt pointed out that robots have one huge advantage: humans can communicate with each other at only 10 bits per second — whereas robots can communicate through the Internet at speeds 100 million times faster. This could, he said, result in multitides of robots building on each other’s learning experiences at lightning speed. Pratt was hired last September to head the Toyota Research Institute, a new US$1-billion AI and robotics research venture headquartered in Palo Alto, California.
Many researchers say that it is important to prepare for this new world. “We need to become much more responsible in terms of designing and operating these robots as they become more powerful,” says Li. In January 2015, a group including Elon Musk, Bill Gates and Stephen Hawking penned an open letter calling for extensive research to maximize the benefits of AI and avoid its potential pitfalls. The letter has now been signed by more than 8,000 people.
Sourced through Scoop.it from: www.nature.com
Leave a Reply