resistant subclones in tissue samples and Tyrosine Kinase tumor activity
Larry H Bernstein, MD, FCAP, Curator
LPBI
Massively parallel sequencing fails to detect minor resistant subclones in tissue samples prior to tyrosine kinase inhibitor therapy
Assay sensitivity, specificity and limit of detection
The limit of detection determines the lowest detectable amount of mutated alleles in a background of wild-type DNA. In this study, the limit of detection was determined for ten different secondary KIT mutations. The limit of detection for each mutation tested was 1% on the GS Junior (Roche). For the MiSeq™ (Illumina) the limit of detection differed depending on the position of the secondary mutation (Table 3, Additional file 5) It spread from 0.03 – 0.25% on the MiSeq™ (Illumina) with the Qiagen panel and 0.02 – 0.45% with the AmpliSeq panel. Exemplarily, two of the serial dilutions illustrating the limit of detection, including the coverage and allele frequencies for each dilution step, are shown in Additional file 6.
Performance of the GS Junior (Roche) pyrosequencing and the GeneRead Mix-n-Match DNAseq Gene Panel (Qiagen) on the MiSeq™ (Illumina)
The GS Junior (Roche) runs yielded in 78,200 – 116,710 passed filter reads and the MiSeq™ (Illumina) runs with the Qiagen panel yielded in 19.89 – 23.04 million passed filter reads, showing an increase in sequencing depth of around 200-fold. The quality of all GS Junior (Roche) and MiSeq™ (Illumina) runs were in the upper range for massively parallel sequencing according to manufacturer’s specifications.
The aligned sequencing reads per sample (four amplicons) were 4,424 – 29,584 on the GS Junior (Roche) and the mean coverage per sample (78 amplicons) were 450,879 – 5,551,341x on the MiSeq™ (Illumina) with the Qiagen panel.
Analysis of secondary mutations in the 33 primary GISTs
The massively parallel sequencing results for the 33 primary GISTs were checked for the corresponding emerging secondary mutations that occurred in the lesions. In the 11 primary tumour samples with secondaryKIT exon 13 mutation (c.1961 T > C, p.V654A) in the recurrent tumour, minor percentages were seen with the GS Junior (Roche). However, when analysing the remaining primary GISTs of the FFPE collective without later emerging secondary p.V654A resistance mutations as a negative control, the substitution was detected with the same mean allele frequency and were considered background noise (Table 4, Figure 2, Figure 3, Additional file 4). On the GS Junior (Roche) minor allele frequencies were observed only at the position of the secondary mutation p.V654A. No mutated alleles were detected with the GS Junior (Roche) at all other positions of known secondary mutations.
To increase the sequencing depth and to decrease amplification artefacts by sequencing only one sample, 12 identical libraries of the same case with the same barcode were loaded on the GS Junior (Roche). With this approach we were able to increase the coverage from 828 to 48,087x and decrease the background noise from 1 to 0.4%, while at the same time decreasing the allele frequency at the position of the p.V654A mutation from an allele frequency of 0.85 to 0.16% (Additional file 7A).
The higher sequencing depth of the MiSeq™ (Illumina) led to similar results. With the Qiagen panel the mean allele frequency of the p.V654A mutation was the same between primary GISTs with and without emerging p.V654A mutation. Minor mutated allele frequencies at the positions of secondary mutations in exon 14 and 17 of the KIT gene were not detected with the GS Junior (Roche). With the MiSeq™ (Illumina) mutated allele frequencies at these positions were detected at lower frequencies than for the p.V654A mutation, but again no difference could be seen between primary GISTs with and without later emerging secondary mutations and were again considered background noise (Table 4, Figure 2, Figure 3, Additional file 4).
When analysing only one same sample at different coverages with the Qiagen panel on the MiSeq™ (Illumina) instead of the GS Junior (Roche), the same effect could be observed; an increase in the sequencing depth decreased the background noise (Additional file 7B).
In the cases 30, 31, 32 and 33, secondary KIT mutations were identified with a high allele frequency (Additional file 4). After repeated examination of the clinical history of the primary tumours, these tumours turned out to be progressed lesions under therapy. Due to insufficient clinical data the tumours were initially identified as primary tumours with activating KIT exon 11 mutations and no secondary resistance mutations were evaluated.
Tumour segmentation into subregions and performance of the Ion AmpliSeq™ Custom DNA Panel (Life Technologies) on the MiSeq™ (Illumina)
Five of the primary GISTs were segmented into a total of 52 equal subregions in order to increase the sensitivity, the sequencing depth and the likelihood of detecting a minor resistant subclone by decreasing the wild-type background,. The five selected primary GISTs showed different primary mutations in KIT exon 11 and different emerging secondary KIT mutations in exon 13, 14 and 17. Additionally, these samples were large resections of different localisations with sufficient tumour material for segmentation. The subregions showed differences neither in morphology nor immunohistochemical staining pattern and intensity (Figure 4). By quantitative immunohistochemistry of the CD117 staining no categorical differences were noticed.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404105/bin/12885_2015_1311_Fig4_HTML.gif
In one run with 15 negative control subregions, the forward and the reverse strand of the exon 14 substitution p.N680K showed an imbalance in sequence reads, which led to a false higher allele frequency (Additional file 8). When excluding these 15 subregions the mean mutated allele frequency was reduced to the same frequency as the other negative control samples. As the imbalance was only seen in one run with negative control subregions, the detection of minor subclones was not affected. Exemplarily, the results of two cases for all three assays are shown in Figure 3.
Comparison of assay performance in DNA extracted from fresh-frozen and FFPE tissue
For the fresh-frozen samples the mutational status after therapy was not known. Therefore, the same four most common secondary KIT mutations, as described above, were analysed.
With the GS Junior (Roche) six fresh-frozen samples were analysed and no mutated allele frequencies at the positions of secondary mutations were detected. With the MiSeq™ (Illumina) three fresh-frozen samples were analysed and minor frequencies of the mutated allele could be detected. However, the allele frequencies were in the same range as in the analysed primary FFPE samples and were determined to be background noise (Figure 3, Additional files 8, 9 and 10).
The development of secondary resistance mutations during imatinib therapy is the most common resistance mechanism in GISTs. Experimental evidence of whether secondary mutations are pre-existing in minor subclones or develop “de novo” during therapy has yet to be provided and would help to develop new therapeutic strategies in GISTs.
In this study, 33 primary GISTs with known progressed disease and secondary resistance mutations were analysed on the GS Junior (Roche) and on the MiSeq™ (Illumina) with three different assays.
With an achieved sensitivity of 0.02% mutated alleles in the background of wild-type alleles for KIT exon 17 p.N822Y, p.N822K and p.Y823D mutations on the MiSeq™ (Illumina) with the AmpliSeq panel, no pre-existing subclones were detected with any of the three assays. The limit of detection varied between individual secondary mutations. Additionally, it could be seen that at each position of secondary mutations some negative samples (samples without later emerging secondary mutations) had higher allele frequencies than the samples with later emerging secondary mutations. Thus, the threshold used to distinguish positive from negative cases was determined for each position of secondary mutations by the allele frequencies of the negative samples, correlating with the limit of detection.
On both systems the sensitivity of the assay was limited by background noise. Particularly high background noise and artificial T > C substitutions at the position of the p.V654A mutation posed a problem and led to a higher detection limit. Artificial T > C transitions could be artefacts which are associated with formalin fixation and are a common problem in FFPE material, especially when using small biopsies and low DNA content [23,24]. Formalin cross-links cytosine nucleotides on either strand and/or deaminates cytosine to uracil and adenine to hypoxanthine. During PCR reaction the Taq polymerase incorporates an adenine instead of a guanine and a cytosine instead of a thymine and non-reproducible C<>T and G<>A mutations are created [24–26].
Forshew et al. showed in 47 FFPE samples that background frequencies of artificial substitutions were around 0.1% and varied depending on base substitution and loci [27].
To reduce the effect of fixation artefacts and background noise three approaches were chosen: the sequencing depth was increased, fresh-frozen material was analysed and FFPE material was treated with uracil-N-glycosylase (UDG).
It is common knowledge that the detection of low mutated allele frequencies depends among others on the sequencing depth. Thus, an increase in the sequence coverage leads to an increase in the detection sensitivity of somatic variants by decreasing the background noise [28–32]. This effect was also seen in our study. However, in our study a much higher increase in the sequencing depth was achieved, which has not been published yet. In our study, this approach was first shown on the GS Junior (Roche). We increased the sequencing depth, and thus the method sensitivity, by sequencing 12 independent libraries with the same barcode of only one case on the GS Junior (Roche). By this approach, we not only increased the method sensitivity by increasing the sequencing depth, we also decreased amplification errors and thus the background noise by combining 12 independent PCR reactions. Here, we were able to increase the coverage from 828 to 48,087 and decrease the background noise from 1 to 0.4%, while at the same time decreasing the allele frequency at the position of the p.V654A mutation from an allele frequency of 0.85 to 0.16%. On the MiSeq™ (Illumina) we could observe the same effect of coverage increase and background noise decrease, when analysing the same sample at different coverages. Here, we used one PCR reaction per sample only.
Generally speaking, with the MiSeq an approximately 70-fold increase in sequencing depth led to an at least 3-fold decrease in the background noise. However, the principle described above could not be observed in all experiments. On the MiSeq™ (Illumina), the AmpliSeq panel showed in some amplicons a more than 10-fold increase in the sequencing depth in comparison to the Qiagen panel but a reduction of the background noise at the positions of the secondary mutations could not be observed an each position.
Thus, in our study, the reduction of background noise and increase in detection sensitivity by increasing the sequencing depth of the method led to the same results. No pre-existing secondary mutation exceeded the background noise (the allele frequency at the relevant position of the secondary mutations) in the primary tumour samples.
We analysed six fresh-frozen samples with the GS Junior (Roche) and three fresh-frozen samples with both MiSeq™ (Illumina) panels. With the GS Junior (Roche) no minor frequencies of mutated alleles were seen at four positions of secondary mutations (p.V654A, p.N680K, p.D820E, p.N822Y). With the MiSeq™ (Illumina) minor allele frequencies of the mutated allele were detected, but the frequencies and the sensitivity were the same as with the FFPE material and were thus determined as background noise.
Spencer et al. showed that most high-quality base discrepancies were not significantly different between FFPE und fresh-frozen material, and are rather due to sequencing errors and DNA damage. Only C > T and G > A transitions were significantly increased when comparing FFPE and fresh-frozen material [33].
Nguyen et al. showed that transitions are especially prone to sequencing errors due to base-pairing and reading errors. They showed >1% erroneous sequences independent of the material source [34]. Another study showed the presence of 0.05 – 1% sequencing errors with human cells and bacterial DNA [35].
Additionally, 19 of the 33 primary GISTs were extracted with the GeneRead DNA FFPE KIT (Qiagen) and sequenced with the AmpliSeq panel. This kit uses UDG, which reduces C > T (and G > A) sequence artefacts [26,36]. Do et al. showed that UDG treatment reduces the allele frequency of G > A artefacts from 0.1 to 2.07% to 0.1 to 0.7%. However, as UDG removes uracil from damaged FFPE DNA only C > T and respectively G > A transitions are reduced. Therefore no reduction in T > C artefacts at the p.V654A position was seen.
At the positions of exon 14 and exon 17 substitutions the allele frequencies of the mutated allele and respectively the background noise were often as low as 0.02% on the MiSeq™ (Illumina). These substitutions were mostly transversions G<>T and T<>A, which are not affected by fixation artefacts or sequencing errors. Nevertheless, no minor resistant subclones could be detected at these positions.
Further, low-diversity libraries, i.e. libraries with only a few amplicons, may lead to an imbalance in sequence reads of the forward and reverse strand in MiSeq™ (Illumina) runs with normal cluster densities. Due to the low number of different amplicons, the likelihood of clusters of the same amplicon appearing next to each other on a flow cell is higher than in MiSeq™ (Illumina) runs with more diverse libraries. When analysing low-diversity libraries, the MiSeq™ (Illumina) cannot distinguish between the individual clusters and might detect the wrong nucleotide. As this reading error occurs in the two sequencing runs independently, it results in an imbalance between the two sequence reads and leads to the detection of false positives with a falsely higher allele frequency. To increase the run quality, it is stated that the cluster density should be decreased and that only balanced sequence reads should be analysed [37–39]. This approach was also applied in this study. To show the risk of imbalanced sequencing reads and false positives when using low-diversity libraries, one run showing imbalanced sequencing reads at the position of the secondary mutation in KIT exon 14 (p.N680K) was included in this paper. In this run, only cases without later emerging p.N680K mutation were included.
In addition to the massively parallel sequencing, a wild-type blocking LNA-mediated clamping assay (TIB Molbiol) for the p.V654A substitution was used in this study. With a sensitivity of 0.4% the assay yielded no other results than the massively parallel sequencing (data not shown). All samples were wild-type for p.V654A.
New large-scale sequencing approaches have revealed the extensive intra- and intertumour heterogeneity in many cancers [40–42]. In renal cancer 63 – 69% of mutations were not detectable in every tumour region [40]. Therefore, the detection of subclonal mutations is important as these subclones may contribute to primary and acquired resistance [43–45].
This tumour heterogeneity and the development of polyclonal resistance mutations during therapy has also been described for GISTs [5,10,11]. Wardelmann et al. showed that a biopsy is not representative for the whole tumour [5,11]. In our study, five of the 33 primary GISTs were segmented into a total of 52 subregions to minimise the analysed tumour region and reduce the wild-type background. However, this approach led to similar results and no minor resistant subclones could be detected prior to tyrosine kinase inhibitor therapy. It remains unresolved whether the detection limit of two mutated clones in 10,000 wild-type clones was not high enough, whether heterogeneous tissue samples are, per se, not suitable for the detection of very small subpopulations of mutated cells or whether in general no subclones were present.
The assessment of the probability of pre-existing resistant subclones is an ongoing challenge. In some tumour entities, pre-existing resistant subclones could be detected. In colorectal carcinoma KRAS resistance mutations were detected with an allele frequency of 0.2%. In non-small cell lung cancer p.T790M EGFRresistance mutations were detected with an allele frequency of 0.4 – 0.02% [4,7,8]. These mutations were mainly detected with TaqMan assays, massively parallel sequencing approaches and mathematical modelling. The method sensitivity in our study was within the same range. However, in our study no pre-existing resistant subclones were detected. This is in concordance with published theories, which state that in GIST resistance mutations develop “de novo” during therapy as GIST patients with developing secondary resistance mutations are commonly treated longer with the tyrosine kinase inhibitor imatinib than resistant patients without these mutations [14]. Hence, it is assumed that clonal selection of pre-existing resistance mutations in GIST is unlikely.
In the previous lung and colorectal carcinoma studies, mentioned above, pre-existing subclones were determined in blood samples and cell cultures.
Therefore, the analysis of circulating tumour DNA may be promising in the early detection of resistance mutations, which will overcome tissue heterogeneity and formalin fixation, and may also be useful in the detection of pre-existing resistant subclones [46–48].
Further, mathematical models have already been used and might be useful to predict pre-existing resistant minor subclones in combination with experimental and clinical data in GISTs [15].
Leave a Reply