The Tension in Academic Biology
Reporter: Aviva Lev-Ari, PhD, RN
Academic biology and its discontents
Disaffected grad students and postdocs increasingly turn to DIYbio to do work that makes a difference.
by Mike Loukides | @mikeloukides | +Mike Loukides | February 6, 2014
When we started BioCoder, we assumed that we were addressing the DIYbio community: interested amateur hobbyists and experimenters without much formal background in biology, who were learning and working in independent hackerspaces.
A couple of conversations have made me question that assumption — not that DIYbio exists; it’s clearly a healthy and growing movement, with new labs and hackerspaces starting in most major cities. But there’s another group mixed in with the amateurs, with a distinctly different set of capabilities and goals. DIYbio doesn’t mean exactly what we thought it did.
That group is what I broadly call “disaffected grad students and postdocs.” They’ve got training, loads of it. But they’ve spent the last few years working in a laboratory under a faculty member, furthering that faculty member’s agenda. They have their own ideas and their own research projects, but they can’t work on them within the context of academic biology. They’re funded by a grant, and the grant will only pay for certain things. And, as Anthony Di Franco points out in “Superseding Institutions in Science and Medicine” (in the current issue of BioCoder), grants are primarily given to people who already know what they’re going to find, and that is not how you get truly innovative and creative research.
So, grad students and postdocs are increasingly turning to the DIYbio scene to do work that makes a difference. Some are working within established labs like Genspace or BioCurious; others are building garage labs or kitchen labs of their own; and still others are working in more advanced biohacker facilities such as Berkeley BioLabs or Bio, Tech, & Beyond. These organizations offer mentoring, advice on fundraising, marketing, and other business issues. Their goal is to make it easier for professional biologists to get a startup off the ground. They aren’t all that different from other tech incubators, just with lab benches and centrifuges. QB3, the California Institute for Quantitative Biosciences, even offers a “Startup in a Box” kit for entrepreneurs in biology.
What’s important about the “disaffected postdoc” phenomenon is that it answers one of the biggest questions about the coming revolution in biotech. Sure, a student can make glowing E. coli. That’s the “hello world” of synthetic biology. Making a glowing plant is a lot harder, and still requires PhD-level expertise. That’s changing, as we understand what it means for synthetic biology to become an engineering discipline. We have a catalog of standard biological parts, we have tools for designing DNA, and we can outsource the actual DNA synthesis. It has gotten much easier to do innovative work, and we expect it to get even easier. But the bar to real innovation is still set very high, and it will be some time before we see many bioscience startups founded by enthusiastic amateurs.
Grad students and postdocs who are leaving academia have already gotten over that bar. They’re a critical missing piece to the puzzle: they have the knowledge and creativity necessary to drive biological innovation in the near term. And some of their innovation will be spent developing the tools that will open up biology to a much wider range of participants.
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.