LDL, HDL, TG, ApoA1 and ApoB: Genetic Loci Associated With Plasma Concentration of these Biomarkers – A Genome-Wide Analysis With Replication
Reporter: Aviva Lev-Ari, PhD, RN
Genetic Loci Associated With Plasma Concentration of Low-Density Lipoprotein Cholesterol, High-Density Lipoprotein Cholesterol, Triglycerides, Apolipoprotein A1, and Apolipoprotein B Among 6382 White Women in Genome-Wide Analysis With Replication
Daniel I. Chasman, PhD*, Guillaume Paré, MD, MS*, Robert Y.L. Zee, PhD, MPH, Alex N. Parker, PhD, Nancy R. Cook, ScD, Julie E. Buring, ScD, David J. Kwiatkowski, MD, PhD, Lynda M. Rose, MS, Joshua D. Smith, BS, Paul T. Williams, PhD, Mark J. Rieder, PhD, Jerome I. Rotter, MD, Deborah A. Nickerson, PhD, Ronald M. Krauss, MD,Joseph P. Miletich, MD and Paul M Ridker, MD, MPH
Author Affiliations
From the Center for Cardiovascular Disease Prevention (D.I.C., G.P., R.Y.L.Z., N.R.C., J.E.B., L.M.R., P.M.R.) and Donald W. Reynolds Center for Cardiovascular Research (D.I.C., G.P., R.Y.L.Z., N.R.C., D.J.K., P.M.R.), Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Amgen, Inc, Cambridge, Mass (A.N.P., J.M.P.); Department of Genome Sciences, University of Washington, Seattle, Wash (J.D.S., M.J.R., D.A.N.); Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, Calif (P.T.W., R.M.K.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, Calif (J.I.R.); and Children’s Hospital Oakland Research Institute, Oakland, Calif (R.M.K.).
Correspondence to Daniel I. Chasman, Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215. E-mail dchasman@rics.bwh.harvard.edu
Abstract
Background— Genome-wide genetic association analysis represents an opportunity for a comprehensive survey of the genes governing lipid metabolism, potentially revealing new insights or even therapeutic strategies for cardiovascular disease and related metabolic disorders.
Methods and Results— We have performed large-scale, genome-wide genetic analysis among 6382 white women with replication in 2 cohorts of 970 additional white men and women for associations between common single-nucleotide polymorphisms and low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides, apolipoprotein (Apo) A1, and ApoB. Genome-wide associations (P<5×10−8) were found at the PCSK9 gene, the APOB gene, the LPLgene, the APOA1-APOA5 locus, the LIPC gene, the CETP gene, the LDLR gene, and the APOE locus. In addition, genome-wide associations with triglycerides at the GCKRgene confirm and extend emerging links between glucose and lipid metabolism. Still other genome-wide associations at the 1p13.3 locus are consistent with emerging biological properties for a region of the genome, possibly related to the SORT1 gene. Below genome-wide significance, our study provides confirmatory evidence for associations at 5 novel loci with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglycerides reported recently in separate genome-wide association studies. The total proportion of variance explained by common variation at the genome-wide candidate loci ranges from 4.3% for triglycerides to 12.6% for ApoB.
Conclusion— Genome-wide associations at the GCKR gene and near the SORT1gene, as well as confirmatory associations at 5 additional novel loci, suggest emerging biological pathways for lipid metabolism among white women.
SOURCE:
Circulation: Cardiovascular Genetics.2008; 1: 21-30
doi: 10.1161/ CIRCGENETICS.108.773168
This is very insightful. There is no doubt that there is the bias you refer to. 42 years ago, when I was postdocing in biochemistry/enzymology before completing my residency in pathology, I knew that there were very influential mambers of the faculty, who also had large programs, and attracted exceptional students. My mentor, it was said (although he was a great writer), could draft a project on toilet paper and call the NIH. It can’t be true, but it was a time in our history preceding a great explosion. It is bizarre for me to read now about eNOS and iNOS, and about CaMKII-á, â, ã, ä – isoenzymes. They were overlooked during the search for the genome, so intermediary metabolism took a back seat. But the work on protein conformation, and on the mechanism of action of enzymes and ligand and coenzyme was just out there, and became more important with the research on signaling pathways. The work on the mechanism of pyridine nucleotide isoenzymes preceded the work by Burton Sobel on the MB isoenzyme in heart. The Vietnam War cut into the funding, and it has actually declined linearly since.
A few years later, I was an Associate Professor at a new Medical School and I submitted a proposal that was reviewed by the Chairman of Pharmacology, who was a former Director of NSF. He thought it was good enough. I was a pathologist and it went to a Biochemistry Review Committee. It was approved, but not funded. The verdict was that I would not be able to carry out the studies needed, and they would have approached it differently. A thousand young investigators are out there now with similar letters. I was told that the Department Chairmen have to build up their faculty. It’s harder now than then. So I filed for and received 3 patents based on my work at the suggestion of my brother-in-law. When I took it to Boehringer-Mannheim, they were actually clueless.