Reporter and Curator: Dr. Sudipta Saha, Ph.D.
Congenital hyperinsulinism is a medical term referring to a variety of congenital disorders in which hypoglycemia is caused by excessive insulin secretion. Congenital forms of hyperinsulinemic hypoglycemia can be transient or persistent, mild or severe. These conditions are present at birth and most become apparent in early infancy. The severe forms can cause obvious problems in the first hour of life, but milder forms may not be detected until adult years. Mild cases can be treated by frequent feedings, more severe cases can be controlled by medications that reduce insulin secretion or effects, and a minority of the most severe cases require surgical removal of part or most of the pancreas to protect the brain from damage due to recurrent hypoglycemia.
Types of congenital hyperinsulinism:
1. Transient neonatal hyperinsulinism
2. Focal hyperinsulinism
- Paternal SUR1 mutation with clonal loss of heterozygosity of 11p15
- Paternal Kir6.2 mutation with clonal loss of heterozygosity of 11p15
3. Diffuse hyperinsulinism
a. Autosomal recessive forms
- i. SUR1 mutations
- ii. Kir6.2 mutations
- iii. Congenital disorders of glycosylation
b. Autosomal dominant forms
- i. Glucokinase gain-of-function mutations
- ii. Hyperammonemic hyperinsulinism (glutamate dehydrogenase gain-of-function mutations)
- iii. Short chain acyl coenzyme A dehydrogenase deficiency
4. Beckwith-Wiedemann syndrome (thought to be due to hyperinsulinism but pathophysiology still uncertain: 11p15 mutation or IGF2 excess)
Congenital hyperinsulinism (CHI or HI) is a condition leading to recurrent hypoglycemia due to an inappropriate insulin secretion by the pancreatic islet beta cells. HI has two main characteristics:
- a high glucose requirement to correct hypoglycemia and
- a responsiveness of hypoglycemia to exogenous glucagon.
HI is usually isolated but may be rarely part of a genetic syndrome (e.g. Beckwith-Wiedemann syndrome, Sotos syndrome etc.). The severity of HI is evaluated by the glucose administration rate required to maintain normal glycemia and the responsiveness to medical treatment. Neonatal onset HI is usually severe while late onset and syndromic HI are generally responsive to a medical treatment. Glycemia must be maintained within normal ranges to avoid brain damages, initially, with glucose administration and glucagon infusion then, once the diagnosis is set, with specific HI treatment. Oral diazoxide is a first line treatment.
In case of unresponsiveness to this treatment, somatostatin analogues and calcium antagonists may be added, and further investigations are required for the putative histological diagnosis:
- pancreatic (18)F-fluoro-L-DOPA PET-CT and
- molecular analysis.
Indeed, focal forms consist of a focal adenomatous hyperplasia of islet cells, and will be cured after a partial pancreatectomy.
Diffuse HI involves all the pancreatic beta cells of the whole pancreas. Diffuse HI resistant to medical treatment (octreotide, diazoxide, calcium antagonists and continuous feeding) may require subtotal pancreatectomy which post-operative outcome is unpredictable.
The genetics of focal islet-cells hyperplasia associates
- a paternally inherited mutation of the ABCC8 or
- the KCNJ11 genes, with
- a loss of the maternal allele specifically in the hyperplasic islet cells.
The genetics of diffuse isolated HI is heterogeneous and may be
- recessively inherited (ABCC8 and KCNJ11) or
- dominantly inherited (ABCC8, KCNJ11, GCK, GLUD1, SLC16A1, HNF4A and HADH).
Syndromic HI are always diffuse form and the genetics depend on the syndrome. Except for HI due to
- potassium channel defect (ABCC8 and KCNJ11),
most of these HI are sensitive to diazoxide.
The main points sum up the management of HI:
- i) prevention of brain damages by normalizing glycemia and
- ii) screening for focal HI as they may be definitively cured after a limited pancreatectomy.
Source & References:
http://en.wikipedia.org/wiki/Congenital_hyperinsulinism
http://www.ncbi.nlm.nih.gov/pubmed/20550977
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.
PUT IT IN CONTEXT OF CANCER CELL MOVEMENT
The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticuluma specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.
Figure 11.25
Association of tropomyosin and troponins with actin filaments. (A) Tropomyosin binds lengthwise along actin filaments and, in striated muscle, is associated with a complex of three troponins: troponin I (TnI), troponin C (TnC), and troponin T (TnT). In (more ) Contractile Assemblies of Actin and Myosin in Nonmuscle Cells
Contractile assemblies of actin and myosin, resembling small-scale versions of muscle fibers, are present also in nonmuscle cells. As in muscle, the actin filaments in these contractile assemblies are interdigitated with bipolar filaments of myosin II, consisting of 15 to 20 myosin II molecules, which produce contraction by sliding the actin filaments relative to one another (Figure 11.26). The actin filaments in contractile bundles in nonmuscle cells are also associated with tropomyosin, which facilitates their interaction with myosin II, probably by competing with filamin for binding sites on actin.
Figure 11.26
Contractile assemblies in nonmuscle cells. Bipolar filaments of myosin II produce contraction by sliding actin filaments in opposite directions. Two examples of contractile assemblies in nonmuscle cells, stress fibers and adhesion belts, were discussed earlier with respect to attachment of the actin cytoskeleton to regions of cell-substrate and cell-cell contacts (see Figures 11.13 and 11.14). The contraction of stress fibers produces tension across the cell, allowing the cell to pull on a substrate (e.g., the extracellular matrix) to which it is anchored. The contraction of adhesion belts alters the shape of epithelial cell sheets: a process that is particularly important during embryonic development, when sheets of epithelial cells fold into structures such as tubes.
The most dramatic example of actin-myosin contraction in nonmuscle cells, however, is provided by cytokinesisthe division of a cell into two following mitosis (Figure 11.27). Toward the end of mitosis in animal cells, a contractile ring consisting of actin filaments and myosin II assembles just underneath the plasma membrane. Its contraction pulls the plasma membrane progressively inward, constricting the center of the cell and pinching it in two. Interestingly, the thickness of the contractile ring remains constant as it contracts, implying that actin filaments disassemble as contraction proceeds. The ring then disperses completely following cell division.
Figure 11.27
Cytokinesis. Following completion of mitosis (nuclear division), a contractile ring consisting of actin filaments and myosin II divides the cell in two.
http://www.ncbi.nlm.nih.gov/books/NBK9961/
This is good. I don’t recall seeing it in the original comment. I am very aware of the actin myosin troponin connection in heart and in skeletal muscle, and I did know about the nonmuscle work. I won’t deal with it now, and I have been working with Aviral now online for 2 hours.
I have had a considerable background from way back in atomic orbital theory, physical chemistry, organic chemistry, and the equilibrium necessary for cations and anions. Despite the calcium role in contraction, I would not discount hypomagnesemia in having a disease role because of the intracellular-extracellular connection. The description you pasted reminds me also of a lecture given a few years ago by the Nobel Laureate that year on the mechanism of cell division.